Skip to main content

Advertisement

Log in

Role of Oxidative Stress and Ca2+ Signaling on Molecular Pathways of Neuropathic Pain in Diabetes: Focus on TRP Channels

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Diabetes mellitus, a debilitating chronic disease, affects ~100 million people. Peripheral neuropathy is one of the most common early complications of diabetes in ~66 % of these patients. Altered Ca2+ handling and Ca2+ signaling were detected in a huge variety of preparations isolated from animals with experimentally induced type 1 and 2 diabetes as well as patients suffering from the disease. We reviewed the role of Ca2+ signaling through cation channels and oxidative stress on diabetic neuropathic pain in sensory neurons. The pathogenesis of diabetic neuropathy involves the polyol pathway, advanced glycation end products, oxidative stress, protein kinase C activation, neurotrophism, and hypoxia. Experimental studies with respect to oxidative stress and Ca2+ signaling, inhibitor roles of antioxidants in diabetic neuropathic pain are also summarized in the review. We hypothesize that deficits in insulin, triggers alterations of sensory neurone phenotype that are critical for the development of abnormal Ca2+ homeostasis and oxidative stress and associated mitochondrial dysfunction. The transient receptor potential channels are a large family of proteins with six main subfamilies. The sheer number of different TRPs with distinct functions supports the statement that these channels are involved in a wide range of processes ranging in diabetic neuropathic pain and it seems that the TRPC, TRPM and TRPV groups are mostly responsible from diabetic neuropathic pain. In conclusion, the accumulating evidence implicating Ca2+ dysregulation and over production of oxidative stress products in diabetic neuropathic pains, along with recent advances in understanding of genetic variations in cation channels such as TRP channels, makes modulation of neuronal Ca2+ handling an increasingly viable approach for therapeutic interventions against the painful and degenerative aspects of many diabetic neuropathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

2-APB:

Aminoethoxydiphenylborane

HEK:

Human embryonic kidney

IGF:

Insulin growth factor

NGF:

Nerve growth factor

NMDA:

N-methyl-d-asparate

NO:

Nitric oxide

PKA:

Protein kinase A

PKC:

Protein kinase C

RAGE:

Advanced glycation end-products

ROS:

Reactive oxygen species

SERCA:

Sarcoendoplasmic reticulum Ca2+-ATPase

STZ:

Streptozotocin

TCA:

Tricarboxylic acid

TRP:

Transient receptor potential

TRPV1:

Transient receptor potential vanilloid 1

VDCC:

Voltage-dependent Ca2+ channels

References

  1. Voitenko NV, Kruglikov IA, Kostyuk EP, Kostyuk PG (2000) Effect of streptozotocin-induced diabetes on the activity of calcium channels in rat dorsal horn neurons. Neuroscience 95:519–524

    Article  PubMed  CAS  Google Scholar 

  2. Veves A, Backonja M, Malik RA (2008) Painful diabetic neuropathy: epidemiology, natural history, early diagnosis, and treatment options. Pain Med 9:660–674

    Article  PubMed  Google Scholar 

  3. Vincent AM, Callaghan BC, Smith AL, Feldman EL (2011) Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nat Rev Neurol 7(10):573–583

    Article  PubMed  CAS  Google Scholar 

  4. Fernyhough P, Calcutt NA (2010) Abnormal calcium homeostasis in peripheral neuropathies. Cell Calcium 47(2):130–139

    Article  PubMed  CAS  Google Scholar 

  5. Verkhratsky A, Fernyhough P (2008) Mitochondrial malfunction and Ca2+ dyshomeostasis drive neuronal pathology in diabetes. Cell Calcium 44:112–122

    Article  PubMed  CAS  Google Scholar 

  6. Umeda M, Ohkubo T, Ono J, Fukuizumi T, Kitamura K (2006) Molecular and immunohistochemical studies in expression of voltage-dependent Ca2+ channels in dorsal root ganglia from streptozotocin-induced diabetic mice. Life Sci 79:1995–2000

    Article  PubMed  CAS  Google Scholar 

  7. Nazıroglu M (2009) Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochem Res 34:2181–2191

    Article  PubMed  Google Scholar 

  8. Negi G, Kumar A, Sharma SS (2011) Melatonin modulates neuroinflammation and oxidative stress in experimental diabetic neuropathy: effects on NF-κB and Nrf2 cascades. J Pineal Res 50:124–131

    PubMed  CAS  Google Scholar 

  9. Obrosova IG (2005) Increased sorbitol pathway activity generates oxidative stress in tissue sites for diabetic complications. Antioxid Redox Signal 7:1543–1552

    Article  PubMed  CAS  Google Scholar 

  10. Obrosova IG, Kador PF (2011) Aldose reductase/polyol inhibitors for diabetic retinopathy. Curr Pharm Biotechnol 12:373–385

    Article  PubMed  CAS  Google Scholar 

  11. Schmidt RE, Dorsey DA, Beaudet LN, Plurad SB, Parvin CA, Ohara S (2000) Effect of IGF-I and neurotrophin-3 on gracile neuroaxonal dystrophy in diabetic and aging rats. Brain Res 876:88–94

    Article  PubMed  CAS  Google Scholar 

  12. Pi J, Bai Y, Zhang Q, Wong V, Floering LM, Daniel K, Reece JM, Deeney JT, Andersen ME, Corkey BE, Collins S (2007) Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes 56:1783–1791

    Article  PubMed  CAS  Google Scholar 

  13. Sarre A, Gabrielli J, Vial G, Leverve XM, Assimacopoulos-Jeannet F (2012) Reactive oxygen species are produced at low glucose and contribute to the activation of AMPK in insulin-secreting cells. Free Radic Biol Med 52:142–150

    Article  PubMed  CAS  Google Scholar 

  14. Supale S, Li N, Brun T, Maechler P (2012) Mitochondrial dysfunction in pancreatic β cells. Trends Endocrinol Metab [Epub ahead of print]

  15. Youn JY, Gao L, Cai H (2012) The p47(phox)- and NADPH oxidase organiser 1 (NOXO1)-dependent activation of NADPH oxidase 1 (NOX1) mediates endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction in a streptozotocin-induced murine model of diabetes. Diabetologia 55:2069–2079

    Article  PubMed  CAS  Google Scholar 

  16. Aley KO, Levine JD (2002) Different peripheral mechanisms mediate enhanced nociception in metabolic/toxic and traumatic painful peripheral neuropathies in the rat. Neuroscience 111:389–397

    Article  PubMed  CAS  Google Scholar 

  17. Orreniu S, Nicotera P (1994) The calcium ion and cell death. J Neural Transm 43:1–11

    Google Scholar 

  18. Greene DA, Stevens MJ, Obrosova I, Feldman EL (1999) Glucose-induced oxidative stress and programmed cell death in diabetic neuropathy. Eur J Pharmacol 375:217–223

    Article  PubMed  CAS  Google Scholar 

  19. Li F, Obrosova IG, Abatan O, Tian D, Larkin D, Stuenkel EL, Stevens MJ (2005) Taurine replacement attenuates hyperalgesia and abnormal calcium signaling in sensory neurons of STZ-D rats. Am J Physiol Endocrinol Metab 288:29–36

    Article  Google Scholar 

  20. Whyte KA, Greenfield SA (2002) Expression of voltage-dependent calcium channels in the embryonic rat midbrain. Brain Res Dev Brain Res 139:189–197

    Article  PubMed  CAS  Google Scholar 

  21. Wen XJ, Xu SY, Chen ZX, Yang CX, Liang H, Li H et al (2010) The roles of T type calcium channel in the development of neuropathic pain following chronic compression of rat dorsal root ganglia. Pharmacology 85:295–300

    Article  PubMed  CAS  Google Scholar 

  22. Li XY, Chen XG (2009) Role of PKCbeta in the malignant tumors and enzastaurin, a PKCbeta inhibitor. Yao Xue Xue Bao 44:449–455

    PubMed  CAS  Google Scholar 

  23. Tahara M, Omatsu-Kanbe M, Sanada M, Maeda K, Koya D, Matsuura H, Kashiwagi A, Yasuda H (2006) Effect of protein kinase Cbeta inhibitor on Ca2+ homeostasis in diabetic sensory neurons. Neuroreport 17:683–688

    Article  PubMed  CAS  Google Scholar 

  24. Kostyuk E, Svichar N, Shishkin V, Kostyuk P (1999) Role of mitochondrial dysfunction in calcium signalling alterations in dorsal root ganglion neurons of mice with experimentally-induced diabetes. Neuroscience 90:535–541

    Article  PubMed  CAS  Google Scholar 

  25. Drel VR, Mashtalir N, Ilnytska O, Shin J, Li F, Lyzogubov VV, Obrosova IG (2006) The leptin-deficient (ob/ob) mouse: a new animal model of peripheral neuropathy of type 2 diabetes and obesity. Diabetes 55:3335–3343

    Article  PubMed  CAS  Google Scholar 

  26. Srinivasan K, Sharma SS (2011) Augmentation of endoplasmic reticulum stress in cerebral ischemia/reperfusion injury associated with comorbid type 2 diabetes. Neurol Res 33:858–865

    Article  PubMed  Google Scholar 

  27. Syed I, Kyathanahalli CN, Jayaram B, Govind S, Rhodes CJ, Kowluru RA, Kowluru A (2011) Increased phagocyte-like NADPH oxidase and ROS generation in type 2 diabetic ZDF rat and human islets: role of Rac1-JNK1/2 signaling pathway in mitochondrial dysregulation in the diabetic islet. Diabetes 60:2843–2852

    Article  PubMed  CAS  Google Scholar 

  28. Fernyhough P, Roy Chowdhury SK, Schmidt RE (2010) Mitochondrial stress and the pathogenesis of diabetic neuropathy. Expert Rev Endocrinol Metab 5:39–49

    PubMed  CAS  Google Scholar 

  29. Adachi T (2010) Modulation of vascular sarco/endoplasmic reticulum calcium ATPase in cardiovascular pathophysiology. Adv Pharmacol 59:165–195

    Article  PubMed  CAS  Google Scholar 

  30. Kobayashi T, Taguchi K, Takenouchi Y, Matsumoto T, Kamata K (2007) Insulin-induced impairment via peroxynitrite production of endothelium-dependent relaxation and sarco/endoplasmic reticulum Ca(2+)-ATPase function in aortas from diabetic rats. Free Radic Biol Med 43:431–443

    Article  PubMed  CAS  Google Scholar 

  31. Turan B, Vassort G (2011) Ryanodine receptor: a new therapeutic target to control diabetic cardiomyopathy. Antioxid Redox Signal 15:1847–1861

    Article  PubMed  CAS  Google Scholar 

  32. Tian C, Shao CH, Moore CJ, Kutty S, Walseth T, DeSouza C, Bidasee KR (2011) Gain of function of cardiac ryanodine receptor in a rat model of type 1 diabetes. Cardiovasc Res 91:300–309

    Article  PubMed  CAS  Google Scholar 

  33. Yaras N, Tuncay E, Purali N, Sahinoglu B, Vassort G, Turan B (2007) Sex-related effects on diabetes-induced alterations in calcium release in the rat heart. Am J Physiol Heart Circ Physiol 293:H3584–H3592

    Article  PubMed  CAS  Google Scholar 

  34. Dror V, Kalynyak TB, Bychkivska Y, Frey MH, Tee M, Jeffrey KD, Nguyen V, Luciani DS, Johnson JD (2008) Glucose and endoplasmic reticulum calcium channels regulate HIF-1beta via presenilin in pancreatic beta-cells. J Biol Chem 283:9909–9916

    Article  PubMed  CAS  Google Scholar 

  35. Luciani DS, Gwiazda KS, Yang TL, Kalynyak TB, Bychkivska Y, Frey MH, Jeffrey KD, Sampaio AV, Underhill TM, Johnson JD (2009) Roles of IP3R and RyR Ca2+ channels in endoplasmic reticulum stress and beta-cell death. Diabetes 58:422–432

    Article  PubMed  CAS  Google Scholar 

  36. Nazıroğlu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 32:1990–2001

    Article  PubMed  Google Scholar 

  37. Pieczenik SR, Neustadt J (2007) Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol 83:84–92

    Article  PubMed  CAS  Google Scholar 

  38. Özkaya D, Naziroğlu M, Armağan A, Demirel A, Köroglu BK, Çolakoğlu N, Kükner A, Sönmez TT (2011) Dietary vitamin C and E modulates oxidative stress induced-kidney and lens injury in diabetic aged male rats through modulating glucose homeostasis and antioxidant systems. Cell Biochem Funct 29:287–293

    Article  PubMed  Google Scholar 

  39. Kang J, Pervaiz S (2012) Mitochondria: redox metabolism and dysfunction. Biochem Res Int [Epub 2012 Apr 24]

  40. Bravenboer B, Kappelle AC, Hamers FP, van Buren T, Erkelens DW, Gispen WH (1992) Potential use of glutathione fort he prevention and treatment of diabetic neuropathy in the streptozotocin—induced diabetic rat. Diabetologia 35:813–817

    Article  PubMed  CAS  Google Scholar 

  41. Sharma SS, Sayyed SG (2006) Effects of trolox on nerve dysfunction, thermal hyperalgesia and oxidative stress in experimental diabetic neuropathy. Clin Exp Pharmacol Physiol 33:1022–1028

    Article  PubMed  CAS  Google Scholar 

  42. Cameron NE, Cotter MA, Archibald V, Dines KC, Maxfield EK (1994) Anti-oxidant and pro-oxidant effects on nerve conduction velocity, endoneurial blood flow and oxygen tension in no-diabetic rats. Diabetelogia 37:449–459

    Article  CAS  Google Scholar 

  43. Low PA, Nickander KK, Tritschler HJ (1997) The roles of oxidative stress and antioxidant treatment in experimental diabetic neuropathy. Diabetes 2:38–42

    Google Scholar 

  44. Nickander KK, Schmelzer JD, Rohwer DA, Low PA (1994) Effect of alpha-tocopherol deficiency on indices of oxidative stress in normal and diabetic peripheral nerve. J Neurol Sci 126:6–14

    Article  PubMed  CAS  Google Scholar 

  45. Kadiroglu AK, Sit D, Kayabasi H, Tuzcu AK, Tasdemir N, Yilmaz ME (2008) The effect of venlafaxine HCl on painful peripheral diabetic neuropathy in patients with type 2 diabetes mellitus. J Diab Compl 22:241–245

    Article  Google Scholar 

  46. Yang T, Tsang KS, Poon WS, Ng HK (2009) Neurotrophism of bone marrow stromal cells to embryonic stem cells: noncontactinduction and transplantation to a mouse ischemic stroke model. Cell Transplant 18:391–404

    Article  PubMed  Google Scholar 

  47. Garrett NE, Malcangio M, Dewhurst M, Tomlinson DR (1997) alpha-Lipoic acid corrects neuropeptide deficits in diabetic rats via induction of trophic support. Neurosci Lett 222:191–194

    Article  PubMed  CAS  Google Scholar 

  48. Cameron NE, Jack AM, Cotter MA (2001) Effect of alpha-lipoic acid on vascular responses and nociception in diabetic rats. Free Radic Biol Med 31:125–135

    Article  PubMed  CAS  Google Scholar 

  49. Valsecchi AE, Franchi S, Panerai AE, Rossi A, Sacerdote P, Colleoni M (2011) The soy isoflavone genistein reverses oxidative and inflammatory state, neuropathic pain, neurotrophic and vasculature deficits in diabetes mouse model. Eur J Pharmacol 650(2–3):694–702

    Article  PubMed  CAS  Google Scholar 

  50. Oja SS, Saransaari P (2007) Pharmacology of taurine. Proc West Pharmacol Soc 50:8–15

    PubMed  CAS  Google Scholar 

  51. Nazıroğlu M (2012) Molecular role of catalase on oxidative stress-induced Ca(2+) signaling and TRP cation channel activation in nervous system. J Recept Signal Transduct Res 32:134–141

    Article  PubMed  Google Scholar 

  52. Nazıroğlu M, Ozgül C (2012) Effects of antagonists and heat on TRPM8 channel currents in dorsal root ganglion neuron activated by nociceptive cold stress and menthol. Neurochem Res 37:314–320

    Article  PubMed  Google Scholar 

  53. Uchida K, Tominaga M (2011) The role of thermosensitive TRP (transient receptor potential) channels in insulin secretion. Endocr J 58:1021–1028

    Article  PubMed  CAS  Google Scholar 

  54. Uchida K, Dezaki K, Damdindorj B, Inada H, Shiuchi T, Mori Y, Yada T, Minokoshi Y, Tominaga M (2011) Lack of TRPM2 impaired insulin secretion and glucose metabolisms in mice. Diabetes 60:119–126

    Article  PubMed  CAS  Google Scholar 

  55. Romero JR, Castonguay AJ, Barton NS, Germer S, Martin M, Zee RY (2010) Gene variation of the transient receptor potential cation channel, subfamily M, members 6 (TRPM6) and 7 (TRPM7), and type 2 diabetes mellitus: a case-control study. Transl Res 156:235–241

    Article  PubMed  CAS  Google Scholar 

  56. Qian F, Huang P, Ma L, Kuznetsov A, Tamarina N, Philipson LH (2002) TRP genes: candidates for nonselective cation channels and store-operated channels in insulin-secreting cells. Diabetes 51(Suppl 1):183–189

    Article  Google Scholar 

  57. Wei Z, Wang L, Han J, Song J, Yao L, Shao L, Sun Z, Zheng L (2009) Decreased expression of transient receptor potential impaires the postischemic recovery of diabetic mouse hearts. Circ J 73:1127–1132

    Article  PubMed  CAS  Google Scholar 

  58. Bishnoi M, Bosgraaf CA, Abooj M, Zhong L, Premkumar LS (2011) Streptozotocin-induced early thermal hyperalgesia is independent of glycemic state of rats: role of transient receptor potential vanilloid 1(TRPV1) and inflammatory mediators. Mol Pain 7:52

    Article  PubMed  Google Scholar 

  59. Pabbidi RM, Yu SQ, Peng S, Khardori R, Pauza ME, Premkumar LS (2008) Influence of TRPV1 on diabetes-induced alterations in thermal pain sensitivity. Mol Pain 4:9

    Article  PubMed  Google Scholar 

  60. Zsombok A, Bhaskaran MD, Gao H, Derbenev AV, Smith BN (2011) Functional plasticity of central TRPV1 receptors in brainstem dorsal vagal complex circuits of streptozotocin-treated hyperglycemic mice. J Neurosci 31:14024–14031

    Article  PubMed  CAS  Google Scholar 

  61. Wilder-Smith EP, Ong WY, Guo Y, Chow AW (2007) Epidermal transient receptor potential vanilloid 1 in idiopathic small nerve fibre disease, diabetic neuropathy and healthy human subjects. Histopathology 51:674–680

    Article  PubMed  CAS  Google Scholar 

  62. Ohanyan VA, Guarini G, Thodeti CK, Talasila PK, Raman P, Haney RM, Meszaros JG, Damron DS, Bratz IN (2011) Endothelin-mediated in vivo pressor responses following TRPV1 activation. Am J Physiol Heart Circ Physiol 301:1135–1142

    Article  Google Scholar 

  63. Manni L, Rocco ML, Barbaro Paparo S, Guaragna M (2011) Electroacupuncture counteracts the development of thermal hyperalgesia and the alteration of nerve growth factor and sensory neuromodulators induced by streptozotocin in adult rats. Diabetologia 54:1900–1908

    Article  PubMed  CAS  Google Scholar 

  64. Ristoiu V, Shibasaki K, Uchida K, Zhou Y, Ton BH, Flonta ML, Tominaga M (2011) Hypoxia- induced sensitization of transient receptor potential vanilloid 1involves activation of hypoxia-inducible factor-1 alpha and PKC. Pain 152:936–945

    Article  PubMed  CAS  Google Scholar 

  65. Tanaka H, Shimaya A, Kiso T, Kuramochi T, Shimokawa T, Shibasaki M (2011) Enhanced insulin secretion and sensitization in diabetic mice on chronic treatment with a transient receptor potential vanilloid 1 antagonist. Life Sci 88:559–563

    Article  PubMed  CAS  Google Scholar 

  66. Liu XH, Qin C, Du JQ, Xu Y, Sun N, Tang JS, Li Q, Foreman RD (2010) Diabetic rats show reduced cardiac-somatic reflex evoked by intrapericardial capsaicin. Eur J Pharmacol 651:1–3

    Google Scholar 

  67. Talbot S, Chahmi E, Dias JP, Couture R (2010) Key role for spinal dorsal horn microglial kinin B1 receptor in early diabetic pain neuropathy. J Neuroinflamm 7:36

    Article  Google Scholar 

  68. Mohammadi-Farani A, Sahebgharani M, Sepehrizadeh Z, Jaberi E, Ghazi-Khansari M (2010) Diabetic thermal hyperalgesia: role of TRPV1 and CB1 receptors of periaqueductal gray. Brain Res 1328:49–56

    Article  PubMed  CAS  Google Scholar 

  69. Kang JH, Goto T, Han IS, Kawada T, Kim YM, Yu R (2009) Dietary capsaicin reduces obesity- induced insulin resistance and hepatic steatosis in obese mice fed a high-fat diet. Obesity (Silver Spring) 18:780–787

    Article  Google Scholar 

  70. Facer P, Casula MA, Smith GD, Benham CD, Chessell IP, Bountra C, Sinisi M, Birch R, Anand P (2007) Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy. BMC Neurol 7:11

    Article  PubMed  Google Scholar 

  71. Wuensch T, Thilo F, Krueger K, Scholze A, Ristow M, Tepel M (2010) High glucose- induced oxidative stress increases transient receptor potential channel expression in human monocytes. Diabetes 59:844–849

    Article  PubMed  CAS  Google Scholar 

  72. Romero JR, Ridker PM, Zee RY (2009) Gene variation of the transient receptor potential cation channel, subfamily member 7 (TRPM7), and risk of incident ischemic stroke: prospective, nested, case-control study. Stroke 40:2965–2968

    Article  PubMed  Google Scholar 

  73. Song Y, Hsu YH, Niu T, Manson JE, Buring JE, Liu S (2009) Common genetic variants of the ion channel transient receptor potential membrane melastatin 6 and 7 (TRPM6 and TRPM7), magnesium intake, and risk of type 2 diabetes in women. BMC Med Genet 10:4

    Article  PubMed  Google Scholar 

  74. Landman N, Jeong SY, Shin SY, Voronov SV, Serban G, Kang MS, Park MK, Di Paolo G, Chung S, Kim TW (2006) Presenilin mutations linked to familial Alzheimer’s disease cause an imbalance in phosphatidylinositol 4,5-bisphosphate metabolism. Proc Natl Acad Sci USA 103:19524–19529

    Article  PubMed  CAS  Google Scholar 

  75. Mita M, Ito K, Taira K, Nakagawa J, Walsh MP, Shoji M (2010) Attenuation of store-operated Ca+2 entry and enhanced expression of TRPC channels in caudal artery smooth muscle from Type 2 diabetic Goto-Kakizaki rats. Clin Exp Pharmacol Physiol 37:670–678

    Article  PubMed  CAS  Google Scholar 

  76. Graham S, Ding M, Ding Y, Sours-Brothers S, Luchowski R, Gryczynski Z, Yorio T, Ma H, Ma R (2010) Abudance of TRPC6 protein in glomerular mesangial cells is decreased by ROS and PKC in diabetes. Am J Physiol Cell Physiol 201:304–315

    Google Scholar 

  77. Zbidi H, López JJ, Amor NB, Bartegi A, Salido GM, Rosado JA (2009) Enhanced expression of STIM/Orail and TRPC3 in platelets from patients with type 2 diyabetes mellitus. Blood Cells Mol Dis 43:211–213

    Article  PubMed  CAS  Google Scholar 

  78. Chung AW, Au Yeung K, Chum E, Okon EB, van Breemen C (2009) Diabetes modulates capacitative calcium entry and expression of transient receptor potential canonical channels in human saphenous vein. Eur J Phamacol 613:114–118

    Article  CAS  Google Scholar 

  79. Liu D, Maier A, Scholze A, Rauch U, Boltzen U, Zhao Z, Zhu Z, Tepel M (2008) High glucose enhances transient receptor potential channel canonical type 6-dependent calcium influx in human platelets via phosphatidylinositol 3-kinase-dependent pathway. Arterioscler Thromb Vasc Biol 28:746–751

    Article  PubMed  Google Scholar 

  80. Niehof M, Borlak J (2008) HNF4 alpha and the Ca-channel TRPC1 are novel disease candidate genes in diabetic nephropathy. Diabetes 7:1069–1077

    Article  Google Scholar 

  81. Li DP, Chen SR, Finnegan TF, Pan HL (2004) Signalling pathway of nitric oxide in synaptic GABA release in the rat paraventricular nucleus. J Physiol 554:100–110

    Article  PubMed  CAS  Google Scholar 

  82. Jagodic MM, Pathirathna S, Nelson MT, Mancuso S, Joksovic PM, Rosenberg ER, Bayliss DA, Jevtovic-Todorovic V, Todorovic SM (2007) Cell-specific alterations of T-type calcium current in painful diabetic neuropathy enhance excitability of sensory neurons. J Neurosci 27:3305–3316

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

There is no financial support and conflict interest in the current study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Nazıroğlu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazıroğlu, M., Dikici, D.M. & Dursun, Ş. Role of Oxidative Stress and Ca2+ Signaling on Molecular Pathways of Neuropathic Pain in Diabetes: Focus on TRP Channels. Neurochem Res 37, 2065–2075 (2012). https://doi.org/10.1007/s11064-012-0850-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0850-x

Keywords

Navigation