Skip to main content
Log in

Necroptosis: a potential, promising target and switch in acute pancreatitis

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Pancreatic acinar cell death is the major pathophysiological change in early acute pancreatitis (AP), and the death modalities are important factors determining its progression and prognosis. During AP, acinar cells undergo two major modes of death, including necrosis and apoptosis. Acinar necrosis can lead to intensely local and systemic inflammatory responses, which both induce and aggravate the lesion. Necrosis has long been considered an unregulated, and passive cell death process. Since the effective interventions of necrosis are difficult to perform, its relevant studies have not received adequate attention. Necroptosis is a newly discovered cell death modality characterized by both necrosis and apoptosis, i.e., it is actively regulated by special genes, while has the typical morphological features of necrosis. Currently, necroptosis is gradually becoming an important topic in the fields of inflammatory diseases. The preliminary results from necroptosis in AP have confirmed the existence of acinar cell necroptosis, which may be a potential target for effectively regulating inflammatory injuries and improving its outcomes; however, the functional changes and mechanisms of necroptosis still require further investigation. This article reviewed the progress of necroptosis in AP to provide a reference for deeply understanding the pathogenic mechanisms of AP and identifying new therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wang G, Lv JC, Wu LF, Li L, Dong DL, Sun B (2014) From nitric oxide to hyperbaric oxygen: invisible and subtle but nonnegligible gaseous signaling molecules in acute pancreatitis. Pancreas 43:511–517

    Article  PubMed  CAS  Google Scholar 

  2. Wang G, Sun B, Zhu H, Gao Y, Li X, Xue D et al (2010) Protective effects of emodin combined with danshensu on experimental severe acute pancreatitis. Inflamm Res 59:479–488

    Article  PubMed  CAS  Google Scholar 

  3. Wang G, Sun B, Gao Y, Meng QH, Jiang HC (2008) An experimental study of emodin assisted early enteral nutrition for the treatment of severe acute pancreatitis. Hepatogastroenterology 55:33–40

    PubMed  CAS  Google Scholar 

  4. Wang G, Sun B, Gao Y, Meng QH, Jiang HC (2007) The effect of emodin assisted early enteral nutrition on severe acute pancreatoitis and secondary hepatic injury. Mediat Inflamm 2007:29638

    Google Scholar 

  5. Kang R, Lotze MT, Zeh HJ, Billiar TR, Tang D (2014) Cell death and DAMPs in acute pancreatitis. Mol Med 20:466–477

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang G, Han B, Zhou H, Wu L, Wang Y, Jia G et al (2013) Inhibition of hydrogen sulfide synthesis provides protection for severe acute pancreatitis rats via apoptosis pathway. Apoptosis 18:28–42

    Article  PubMed  Google Scholar 

  7. Dannappel M, Vlantis K, Kumari S, Polykratis A, Kim C, Wachsmuth L et al (2014) RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513:90–94

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Newton K, Hildebrand JM, Shen Z, Rodriguez D, Alvarez-Diaz S, Petersen S et al (2014) Is SIRT2 required for necroptosis? Nature 506:E4–E6

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517:311–320

    Article  PubMed  CAS  Google Scholar 

  10. Li S, Zhang L, Yao Q, Li L, Dong N, Rong J et al (2013) Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains. Nature 501:242–246

    Article  PubMed  CAS  Google Scholar 

  11. Takahashi N, Vereecke L, Bertrand MJ, Duprez L, Berger SB, Divert T et al (2014) RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature 513:95–99

    Article  PubMed  CAS  Google Scholar 

  12. Newton K, Dugger DL, Wickliffe KE, Kapoor N, de Almagro MC, Vucic D et al (2014) Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 343:1357–1360

    Article  PubMed  CAS  Google Scholar 

  13. Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC et al (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325:332–336

    Article  PubMed  CAS  Google Scholar 

  14. Rickard JA, O’Donnell JA, Evans JM, Lalaoui N, Poh AR, Rogers T et al (2014) RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 157:1175–1188

    Article  PubMed  CAS  Google Scholar 

  15. Zhou W, Yuan J (2014) SnapShot: necroptosis. Cell 158:464–464e1

    Article  PubMed  CAS  Google Scholar 

  16. Wang Z, Jiang H, Chen S, Du F, Wang X (2012) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148:228–243

    Article  PubMed  CAS  Google Scholar 

  17. Dillon CP, Weinlich R, Rodriquez DA, Cripps JG, Quarato G, Gurung P et al (2014) RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157:1189–1202

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Linkermann A, Green DR (2014) Necroptosis. N Engl J Med 370:455–465

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Kaczmarek A, Vandenabeele P, Krysko DV (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38:209–223

    Article  PubMed  CAS  Google Scholar 

  20. Duprez L, Takahashi N, Van Hauwermeiren F, Vandendriessche B, Goossens V, Vanden Berghe T et al (2011) RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity 35:908–918

    Article  PubMed  CAS  Google Scholar 

  21. Moriwaki K, Balaji S, McQuade T, Malhotra N, Kang J, Chan FK (2014) The necroptosis adaptor RIPK3 promotes injury-induced cytokine expression and tissue repair. Immunity 41:567–578

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Bleriot C, Dupuis T, Jouvion G, Eberl G, Disson O, Lecuit M (2015) Liver-resident macrophage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection. Immunity 42:145–158

    Article  PubMed  CAS  Google Scholar 

  23. Bhatia M, Wong FL, Cao Y, Lau HY, Huang J, Puneet P et al (2005) Pathophysiology of acute pancreatitis. Pancreatology 5:132–144

    Article  PubMed  Google Scholar 

  24. Gukovskaya AS, Mareninova OA, Odinokova IV, Sung KF, Lugea A, Fischer L et al (2006) Cell death in pancreatitis: effects of alcohol. J Gastroenterol Hepatol 21:S10–S13

    Article  PubMed  CAS  Google Scholar 

  25. Kaiser AM, Saluja AK, Lu L, Yamanaka K, Yamaguchi Y, Steer ML (1996) Effects of cycloheximide on pancreatic endonuclease activity, apoptosis, and severity of acute pancreatitis. Am J Physiol 271:C982–C993

    PubMed  CAS  Google Scholar 

  26. Chan FK, Shisler J, Bixby JG, Felices M, Zheng L, Appel M et al (2003) A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J Biol Chem 278:51613–51621

    Article  PubMed  CAS  Google Scholar 

  27. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S et al (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1:489–495

    Article  PubMed  CAS  Google Scholar 

  28. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119

    Article  PubMed  CAS  Google Scholar 

  29. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15:135–147

    Article  PubMed  CAS  Google Scholar 

  30. Feoktistova M, Leverkus M (2015) Programmed necrosis and necroptosis signaling. FEBS J 282:19–31

    Article  PubMed  CAS  Google Scholar 

  31. Xie T, Peng W, Yan C, Wu J, Gong X, Shi Y (2013) Structural insights into RIP3-mediated necroptotic signaling. Cell Rep 5:70–78

    Article  PubMed  CAS  Google Scholar 

  32. Galluzzi L, Kepp O, Kroemer G (2014) MLKL regulates necrotic plasma membrane permeabilization. Cell Res 24:139–140

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Jacob TG, Sreekumar VI, Roy TS, Garg PK (2014) Electron-microscopic evidence of mitochondriae containing macroautophagy in experimental acute pancreatitis: implications for cell death. Pancreatology 14:454–458

    Article  PubMed  Google Scholar 

  34. Hall JC, Crawford HC (2014) The conspiracy of autophagy, stress and inflammation in acute pancreatitis. Curr Opin Gastroenterol 30:495–499

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sah RP, Saluja A (2011) Molecular mechanisms of pancreatic injury. Curr Opin Gastroenterol 27:444–451

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mashima H, Ohnishi H (2014) The mechanism of the onset of acute pancreatitis. Nihon Shokakibyo Gakkai Zasshi 111:1550–1560

    PubMed  Google Scholar 

  37. Wu L, Cai B, Liu X, Cai H (2014) Emodin attenuates calcium overload and endoplasmic reticulum stress in AR42 J rat pancreatic acinar cells. Mol Med Rep 9:267–272

    PubMed  CAS  Google Scholar 

  38. Wu L, Cai B, Zheng S, Liu X, Cai H, Li H (2013) Effect of emodin on endoplasmic reticulum stress in rats with severe acute pancreatitis. Inflammation 36:1020–1029

    Article  PubMed  CAS  Google Scholar 

  39. Sah RP, Garg P, Saluja AK (2012) Pathogenic mechanisms of acute pancreatitis. Curr Opin Gastroenterol 28:507–515

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Zeng Y, Wang X, Zhang W, Wu K, Ma J (2012) Hypertriglyceridemia aggravates ER stress and pathogenesis of acute pancreatitis. Hepatogastroenterology 59:2318–2326

    PubMed  CAS  Google Scholar 

  41. Seyhun E, Malo A, Schäfer C, Moskaluk CA, Hoffmann RT, Göke B et al (2011) Tauroursodeoxycholic acid reduces endoplasmic reticulum stress, acinar cell damage, and systemic inflammation in acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 301:G773–G782

    Article  PubMed  CAS  Google Scholar 

  42. Pandol SJ, Gorelick FS, Gerloff A, Lugea A (2010) Alcohol abuse, endoplasmic reticulum stress and pancreatitis. Dig Dis 28:776–782

    Article  PubMed  Google Scholar 

  43. Saveljeva S, Mc Laughlin SL, Vandenabeele P, Samali A, Bertrand MJ (2015) Endoplasmic reticulum stress induces ligand-independent TNFR1-mediated necroptosis in L929 cells. Cell Death Dis 6:e1587

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Rizzi F, Naponelli V, Silva A, Modernelli A, Ramazzina I, Bonacini M et al (2014) Polyphenon E(R), a standardized green tea extract, induces endoplasmic reticulum stress, leading to death of immortalized PNT1a cells by anoikis and tumorigenic PC3 by necroptosis. Carcinogenesis 35:828–839

    Article  PubMed  CAS  Google Scholar 

  45. Wu J, Huang Z, Ren J, Zhang Z, He P, Li Y et al (2013) Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res 23:994–1006

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Lin Z, Guo J, Xue P, Huang L, Deng L, Yang X et al (2014) Chaiqinchengqi decoction regulates necrosis-apoptosis via regulating the release of mitochondrial cytochrome c and caspase-3 in rats with acute necrotizing pancreatitis. J Tradit Chin Med 34:178–183

    Article  PubMed  Google Scholar 

  47. Huang W, Booth DM, Cane MC, Chvanov M, Javed MA, Elliott VL et al (2014) Fatty acid ethyl ester synthase inhibition ameliorates ethanol-induced Ca2+-dependent mitochondrial dysfunction and acute pancreatitis. Gut 63:1313–1324

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Lerch MM, Halangk W, Mayerle J (2013) Preventing pancreatitis by protecting the mitochondrial permeability transition pore. Gastroenterology 144:265–269

    Article  PubMed  Google Scholar 

  49. Maléth J, Rakonczay Z Jr, Venglovecz V, Dolman NJ, Hegyi P (2013) Central role of mitochondrial injury in the pathogenesis of acute pancreatitis. Acta Physiol (Oxf) 207:226–235

    Article  Google Scholar 

  50. Marshall KD, Baines CP (2014) Necroptosis: is there a role for mitochondria? Front Physiol 5:323

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bae JH, Shim JH, Cho YS (2014) Chemical regulation of signaling pathways to programmed necrosis. Arch Pharm Res 37:689–697

    Article  PubMed  CAS  Google Scholar 

  52. Fulda S (2013) The mechanism of necroptosis in normal and cancer cells. Cancer Biol Ther 14:999–1004

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Kim JE, Ryu HJ, Kim MJ, Kang TC (2014) LIM kinase-2 induces programmed necrotic neuronal death via dysfunction of DRP1-mediated mitochondrial fission. Cell Death Differ 21:1036–1049

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang JG, Alvarez-Diaz S et al (2013) The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39:443–453

    Article  PubMed  CAS  Google Scholar 

  55. Remijsen Q, Goossens V, Grootjans S, Van den Haute C, Vanlangenakker N, Dondelinger Y et al (2014) Depletion of RIPK3 or MLKL blocks TNF- driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis. Cell Death Dis 5:e1004

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Moujalled DM, Cook WD, Murphy JM, Vaux DL (2014) Necroptosis induced by RIPK3 requires MLKL but not Drp1. Cell Death Dis 5:e1086

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832

    Article  PubMed  CAS  Google Scholar 

  58. Yuk JM, Jo EK (2013) Crosstalk between autophagy and inflammasomes. Mol Cells 36:393–399

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J et al (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479:117–121

    Article  PubMed  CAS  Google Scholar 

  60. Lukens JR, Vogel P, Johnson GR, Kelliher MA, Iwakura Y, Lamkanfi M et al (2013) RIP1-driven autoinflammation targets IL-1α independently of inflammasomes and RIP3. Nature 498:224–227

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481:278–286

    Article  PubMed  CAS  Google Scholar 

  62. Hoque R, Sohail M, Malik A, Sarwar S, Luo Y, Shah A et al (2011) TLR9 and the NLRP3 inflammasome link acinar cell death with inflammation in acute pancreatitis. Gastroenterology 141:358–369

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Ren JD, Ma J, Hou J, Xiao WJ, Jin WH, Wu J et al (2014) Hydrogen-rich saline inhibits NLRP3 inflammasome activation and attenuates experimental acute pancreatitis in mice. Mediat Inflamm 2014:930894

    Google Scholar 

  64. Galluzzi L, Kepp O, Krautwald S, Kroemer G, Linkermann A (2014) Molecular mechanisms of regulated necrosis. Semin Cell Dev Biol 35:24–32

    Article  PubMed  CAS  Google Scholar 

  65. Fayaz SM, Suvanish Kumar VS, Rajanikant GK (2014) Necroptosis: who knew there were so many interesting ways to die? CNS Neurol Disord: Drug Targets 13:42–51

    Article  CAS  Google Scholar 

  66. Chan FK, Luz NF, Moriwaki K (2015) Programmed necrosis in the cross talk of cell death and inflammation. Annu Rev Immunol 33:79–106

    Article  PubMed  CAS  Google Scholar 

  67. He S, Wang L, Miao L, Wang T, Du F, Zhao L et al (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137:1100–1111

    Article  PubMed  CAS  Google Scholar 

  68. Kearney CJ, Cullen SP, Tynan GA, Henry CM, Clancy D, Lavelle EC et al (2015) Necroptosis suppresses inflammation via termination of TNF-or LPS-induced cytokine and chemokine production. Cell Death Differ 22:1313–1327

    Article  PubMed  CAS  Google Scholar 

  69. Linkermann A, Bräsen JH, De Zen F, Weinlich R, Schwendener RA, Green DR et al (2012) Dichotomy between RIP1- and RIP3-mediated necroptosis in tumor necrosis factor-α-induced shock. Mol Med 18:577–586

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Wu W, Liu P, Li J (2012) Necroptosis: an emerging form of programmed cell death. Crit Rev Oncol Hematol 82:249–258

    Article  PubMed  Google Scholar 

  71. Ma X, Conklin DJ, Li F, Dai Z, Hua X, Li Y et al (2015) The oncogenic microRNA miR-21 promotes regulated necrosis in mice. Nat Commun 6:7151

    Article  PubMed  PubMed Central  Google Scholar 

  72. Fulda S (2013) Alternative cell death pathways and cell metabolism. Int J Cell Biol 2013:463637

    Article  PubMed  PubMed Central  Google Scholar 

  73. Vanden Berghe T, Vanlangenakker N, Parthoens E, Deckers W, Devos M, Festjens N et al (2010) Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 17:922–930

    Article  PubMed  CAS  Google Scholar 

  74. Iida A, Yoshidome H, Shida T, Kimura F, Shimizu H, Ohtsuka M et al (2009) Does prolonged biliary obstructive jaundice sensitize the liver to endotoxemia? Shock 31:397–403

    Article  PubMed  CAS  Google Scholar 

  75. Odinokova IV, Sung KF, Mareninova OA, Hermann K, Gukovsky I, Gukovskaya AS (2008) Mitochondrial mechanisms of death responses in pancreatitis. J Gastroenterol Hepatol 23:S25–S30

    Article  PubMed  CAS  Google Scholar 

  76. Feissner RF, Skalska J, Gaum WE, Sheu SS (2009) Crosstalk signaling between mitochondrial Ca2+ and ROS. Front Biosci 14:1197–1218

    Article  CAS  Google Scholar 

  77. Voronina SG, Barrow SL, Simpson AW, Gerasimenko OV, da Silva Xavier G, Rutter GA et al (2010) Dynamic changes in cytosolic and mitochondrial ATP levels in pancreatic acinar cells. Gastroenterology 138:1976–1987

    Article  PubMed  CAS  Google Scholar 

  78. Marx J, Pretorius E, Bester MJ (2006) Effects of Urginea sanguinea, a traditional asthma remedy, on embryo neuronal development. J Ethnopharmacol 104:315–321

    Article  PubMed  CAS  Google Scholar 

  79. Criddle DN, Gerasimenko JV, Baumgartner HK, Jaffar M, Voronina S, Sutton R et al (2007) Calcium signalling and pancreatic cell death: apoptosis or necrosis? Cell Death Differ 14:1285–1294

    Article  PubMed  CAS  Google Scholar 

  80. Kang R, Zhang Q, Hou W, Yan Z, Chen R, Bonaroti J et al (2014) Intracellular hmgb1 inhibits inflammatory nucleosome release and limits acute pancreatitis in mice. Gastroenterology 146:1097–1107

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Gukovskaya AS, Gukovsky I (2012) Autophagy and pancreatitis. Am J Physiol Gastrointest Liver Physiol 303:G993–G1003

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Yang S, Bing M, Chen F, Sun Y, Chen H, Chen W (2012) Autophagy regulation by the nuclear factor κB signal axis in acute pancreatitis. Pancreas 41:367–373

    Article  PubMed  CAS  Google Scholar 

  83. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  84. Gukovsky I, Pandol SJ, Mareninova OA, Shalbueva N, Jia W, Gukovskaya AS (2012) Impaired autophagy and organellar dysfunction in pancreatitis. J Gastroenterol Hepatol 27:27–32

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Feng D, Park O, Radaeva S, Wang H, Yin S, Kong X et al (2012) Interleukin-22 ameliorates cerulean-induced pancreatitis in mice by inhibiting the autophagic pathway. Int J Biol Sci 8:249–257

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Ohmuraya M, Yamamura K (2008) Autophagy and acute pancreatitis: a novel autophagy theory for trypsinogen activation. Autophagy 4:1060–1062

    Article  PubMed  CAS  Google Scholar 

  87. Chinzei R, Masuda A, Nishiumi S, Nishida M, Onoyama M, Sanuki T et al (2011) Vitamin K3 attenuates cerulean-induced acute pancreatitis through inhibition of the autophagic pathway. Pancreas 40:84–94

    Article  PubMed  CAS  Google Scholar 

  88. Sun X, Tang D (2014) HMGB1-dependent and -independent autophagy. Autophagy 10:1873–1876

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This paper was supported by grants from the National Nature Scientific Foundation of China (Nos. 81100314, 81170431, 81370565, 81372613), the New Century Support Foundation for Elitist of Heilongjiang Province in China (No. 1253-NCET-017) and Wei-Han Yu Scientific Foundation of Harbin Medical University in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bei Sun.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Gang Wang, Feng-Zhi Qu, and Le Li have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Qu, FZ., Li, L. et al. Necroptosis: a potential, promising target and switch in acute pancreatitis. Apoptosis 21, 121–129 (2016). https://doi.org/10.1007/s10495-015-1192-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1192-3

Keywords

Navigation