Skip to main content

Advertisement

Log in

miR-92a inhibits vascular smooth muscle cell apoptosis: role of the MKK4–JNK pathway

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Vascular smooth muscle cell (VSMC) apoptosis plays an important role in vascular remodeling and atherosclerotic plaque instability. Oxidative stress in diseased vessels promotes VSMC apoptosis in part by activating the c-Jun N-terminal kinase (JNK) pathway, which has been identified as a molecular target of miR-92a in macrophages. Here, we examined the expression and biological activity of miR-92a in VSMC. Quiescent VSMC exhibited a low basal expression of miR-92a, which was positively regulated by serum stimulation and negatively regulated by H2O2. Overexpression of miR-92a decreased H2O2-induced VSMC apoptosis as indicated by TUNEL assay and cleaved caspase-3 protein levels. Using 3′UTR-reporter assay, we found that miR-92a overexpression led to suppression of both mitogen-activated protein kinase kinase 4 (MKK4)- and JNK1-dependent luciferase activity. We also found that 10 mer seed match between miRNA:mRNA pair is more efficient than 8 mer seed match for us to identify authentic miRNA target. Protein levels of active phospho-JNK and phospho-c-Jun, downstream targets of the MKK4–JNK1 pathway, were also decreased by overexpressing miR-92a in VSMC under oxidative stress. Consistent with these findings, overexpression of MKK4 reversed the anti-apoptotic effects of miR-92a in oxidatively stressed VSMC. In conclusion, miR-92a overexpression inhibits H2O2-induced VSMC apoptosis by directly targeting the MKK4–JNK1 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

VSMC:

Vascular smooth muscle cells

MAPK:

Mitogen-activated protein kinase

MKK4:

Mitogen-activated protein kinase (MAPK) kinase 4

JNK:

C-Jun N-terminal kinase

References

  1. Clarke M, Bennett M (2006) Defining the role of vascular smooth muscle cell apoptosis in atherosclerosis. Cell Cycle 5:2329–2331

    Article  PubMed  CAS  Google Scholar 

  2. Larroque-Cardoso P, Swiader A, Ingueneau C, Negre-Salvayre A, Elbaz M, Reyland ME et al (2013) Role of protein kinase C delta in ER stress and apoptosis induced by oxidized LDL in human vascular smooth muscle cells. Cell Death Dis 4:e520

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Lonn ME, Dennis JM, Stocker R (2012) Actions of “antioxidants” in the protection against atherosclerosis. Free Radic Biol Med 53:863–884

    Article  PubMed  CAS  Google Scholar 

  4. Murakami T, Takagi H, Suzuma K, Suzuma I, Ohashi H, Watanabe D et al (2005) Angiopoietin-1 attenuates H2O2-induced SEK1/JNK phosphorylation through the phosphatidylinositol 3-kinase/Akt pathway in vascular endothelial cells. J Biol Chem 280:31841–31849

    Article  PubMed  CAS  Google Scholar 

  5. Kaiser RA, Liang Q, Bueno O, Huang Y, Lackey T, Klevitsky R et al (2005) Genetic inhibition or activation of JNK1/2 protects the myocardium from ischemia-reperfusion-induced cell death in vivo. J Biol Chem 280:32602–32608

    Article  PubMed  CAS  Google Scholar 

  6. Kim SD, Moon CK, Eun SY, Ryu PD, Jo SA (2005) Identification of ASK1, MKK4, JNK, c-Jun, and caspase-3 as a signaling cascade involved in cadmium-induced neuronal cell apoptosis. Biochem Biophys Res Commun 328:326–334

    Article  PubMed  CAS  Google Scholar 

  7. Tatsuguchi M, Seok HY, Callis TE, Thomson JM, Chen JF, Newman M et al (2007) Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol 42:1137–1141

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Tang Y, Wang Y, Chen L, Pan Y, Weintraub N (2012) Cross talk between the notch signaling and noncoding RNA on the fate of stem cells. Prog Mol Biol Transl Sci 111:175–193

    Article  PubMed  CAS  Google Scholar 

  9. Chio CC, Lin JW, Cheng HA, Chiu WT, Wang YH, Wang JJ et al (2013) MicroRNA-210 targets antiapoptotic Bcl-2 expression and mediates hypoxia-induced apoptosis of neuroblastoma cells. Arch Toxicol 87:459–468

    Article  PubMed  CAS  Google Scholar 

  10. Liu L, Chen R, Huang S, Wu Y, Li G, Zhang B et al (2012) miR-153 sensitized the K562 cells to As2O3-induced apoptosis. Med Oncol 29:243–247

    Article  PubMed  CAS  Google Scholar 

  11. Qian L, Van Laake LW, Huang Y, Liu S, Wendland MF, Srivastava D (2011) miR-24 inhibits apoptosis and represses bim in mouse cardiomyocytes. J Exp Med 208:549–560

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Cheng Y, Zhang C (2010) MicroRNA-21 in cardiovascular disease. J Cardiovasc Transl Res 3:251–255

    Article  PubMed Central  PubMed  Google Scholar 

  13. Jazbutyte V, Thum T (2010) MicroRNA-21: from cancer to cardiovascular disease. Curr Drug Targets 11:926–935

    Article  PubMed  CAS  Google Scholar 

  14. Rippe C, Blimline M, Magerko KA, Lawson BR, LaRocca TJ, Donato AJ et al (2012) MicroRNA changes in human arterial endothelial cells with senescence: relation to apoptosis, eNOS and inflammation. Exp Gerontol 47:45–51

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Iaconetti C, Polimeni A, Sorrentino S, Sabatino J, Pironti G, Esposito G et al (2012) Inhibition of miR-92a increases endothelial proliferation and migration in vitro as well as reduces neointimal proliferation in vivo after vascular injury. Basic Res Cardiol 107:296

    Article  PubMed  CAS  Google Scholar 

  16. Li WG, Miller FJ Jr, Brown MR, Chatterjee P, Aylsworth GR, Shao J et al (2000) Enhanced H(2)O(2)-induced cytotoxicity in “epithelioid” smooth muscle cells: implications for neointimal regression. Arterioscler Thromb Vasc Biol 20:1473–1479

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Yu SM, Tsai SY, Guh JH, Ko FN, Teng CM, Ou JT (1996) Mechanism of catecholamine-induced proliferation of vascular smooth muscle cells. Circulation 94:547–554

    Article  PubMed  CAS  Google Scholar 

  18. Derijard B, Raingeaud J, Barrett T, Wu IH, Han J, Ulevitch RJ et al (1995) Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science 267:682–685

    Article  PubMed  CAS  Google Scholar 

  19. Whitmarsh AJ, Davis RJ (2007) Role of mitogen-activated protein kinase kinase 4 in cancer. Oncogene 26:3172–3184

    Article  PubMed  CAS  Google Scholar 

  20. Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A et al (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324:1710–1713

    Article  PubMed  CAS  Google Scholar 

  21. Lai L, Song Y, Liu Y, Chen Q, Han Q, Chen W et al (2013) MicroRNA-92a negatively regulates Toll-like receptor (TLR)-triggered inflammatory response in macrophages by targeting MKK4 kinase. J Biol Chem 288:7956–7967

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Tchivilev I, Madamanchi NR, Vendrov AE, Niu XL, Runge MS (2008) Identification of a protective role for protein phosphatase 1cgamma1 against oxidative stress-induced vascular smooth muscle cell apoptosis. J Biol Chem 283:22193–22205

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Chaudhry MA, Omaruddin RA, Brumbaugh CD, Tariq MA, Pourmand N (2013) Identification of radiation-induced microRNA transcriptome by next-generation massively parallel sequencing. J Radiat Res 54:808–822

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Ohyashiki M, Ohyashiki JH, Hirota A, Kobayashi C, Ohyashiki K (2011) Age-related decrease of miRNA-92a levels in human CD8 + T-cells correlates with a reduction of naive T lymphocytes. Immun Ageing 8:11

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Rauch C, Feifel E, Amann EM, Spotl HP, Schennach H, Pfaller W et al (2011) Alternatives to the use of fetal bovine serum: human platelet lysates as a serum substitute in cell culture media. Altex 28:305–316

    Article  PubMed  Google Scholar 

  26. Thomas M, Lange-Grunweller K, Hartmann D, Golde L, Schlereth J, Streng D et al (2013) Analysis of transcriptional regulation of the human miR-17-92 cluster; evidence for involvement of Pim-1. Int J Mol Sci 14:12273–12296

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Zheng Z-M, Wang X (2011) Regulation of cellular miRNA expression by human papilloma viruses. Biochim Biophys Acta 1809:668–677

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Woods K, Thomson JM, Hammond SM (2007) Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors. J Biol Chem 282:2130–2134

    Article  PubMed  CAS  Google Scholar 

  29. Ohyashiki JH, Umezu T, Kobayashi C, Hamamura RS, Tanaka M, Kuroda M et al (2010) Impact on cell to plasma ratio of miR-92a in patients with acute leukemia: in vivo assessment of cell to plasma ratio of miR-92a. BMC Res Notes 3:347

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27:6245–6251

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Guma M, Firestein GS (2012) c-Jun N-terminal kinase in inflammation and rheumatic diseases. Open Rheumatol J 6:220–231

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Chadee DN, Kyriakis JM (2010) Activation of SAPK/JNKs in vitro. Methods Mol Biol 661:59–73

    Article  PubMed  CAS  Google Scholar 

  33. Owen GR, Achilonu I, Dirr HW (2013) High yield purification of JNK1beta1 and activation by in vitro reconstitution of the MEKK1– > MKK4– > JNK MAPK phosphorylation cascade. Protein Expr Purif 87:87–99

    Article  PubMed  CAS  Google Scholar 

  34. Liu W, Zi M, Jin J, Prehar S, Oceandy D, Kimura TE et al (2009) Cardiac-specific deletion of mkk4 reveals its role in pathological hypertrophic remodeling but not in physiological cardiac growth. Circ Res 104:905–914

    Article  PubMed  CAS  Google Scholar 

  35. Saha MN, Jiang H, Yang Y, Zhu X, Wang X, Schimmer AD et al (2012) Targeting p53 via JNK pathway: a novel role of RITA for apoptotic signaling in multiple myeloma. PLoS ONE 7:e30215

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Jones EV, Dickman MJ, Whitmarsh AJ (2007) Regulation of p73-mediated apoptosis by c-Jun N-terminal kinase. Biochem J 405:617–623

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Nateri AS, Riera-Sans L, Da Costa C, Behrens A (2004) The ubiquitin ligase SCFFbw7 antagonizes apoptotic JNK signaling. Science 303:1374–1378

    Article  PubMed  CAS  Google Scholar 

  38. Deng Y, Ren X, Yang L, Lin Y, Wu X (2003) A JNK-dependent pathway is required for TNF alpha-induced apoptosis. Cell 115:61–70

    Article  PubMed  CAS  Google Scholar 

  39. Nijboer CH, van der Kooij MA, van Bel F, Ohl F, Heijnen CJ, Kavelaars A (2010) Inhibition of the JNK/AP-1 pathway reduces neuronal death and improves behavioral outcome after neonatal hypoxic-ischemic brain injury. Brain Behav Immun 24:812–821

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the American Heart Association Beginning Grant-in-Aid 0765094Y (to Y.T.); NIH Grant HL086555 (to Y.T.), and NIH Grants HL076684 and HL62984 (to N.L.W.).

Conflict of interest

None to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaoliang Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10495_2014_987_MOESM1_ESM.pdf

Supplementary Figure 1 VSMC were treated with 100 µM H2O2 in DMEM with 0%, 5%, 10% or 20% FBS for 24 h. TUNEL staining (red) showing representative images (A) and quantitative data (B); nuclei are stained with DAPI (PDF 619 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Zhou, M., Wang, Y. et al. miR-92a inhibits vascular smooth muscle cell apoptosis: role of the MKK4–JNK pathway. Apoptosis 19, 975–983 (2014). https://doi.org/10.1007/s10495-014-0987-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-0987-y

Keywords

Navigation