Skip to main content

Advertisement

Log in

Inhibition of miR-92a increases endothelial proliferation and migration in vitro as well as reduces neointimal proliferation in vivo after vascular injury

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The role of miR-92a on vascular remodelling after injury is currently unknown. Thus, the aim of the present study was to evaluate the role of miR-92a on rat endothelial and vascular smooth muscle cells proliferation and migration in vitro as well as after balloon injury or arterial stenting in vivo. MiR-92a was highly expressed in RAO-ECs and vascular endothelium, but not in RAO-SMCs or medial smooth muscle as assessed by real-time RT-PCR. Importantly, BrdU incorporation and wound healing assay provide evidence that functional inhibition of miR-92a resulted in an increased RAO-ECs proliferation and migration, but had no effect on RAO-SMCs proliferation or migration in vitro. Immunoblotting analysis revealed an increased phosphorylation of ERK1/2, JNK/SAPK as well as eNOS and phospho-eNOS increased expression level in RAO-ECs as a consequence of miR-92a inhibition. Using gain and loss of function experiments, we showed that miR-92a modulates regulation of KLF4 and MKK4 expression level in endothelial cells. Finally, in vivo administration of antagomiR-92a significantly enhanced re-endothelialization in injured carotid arteries and reduced neointimal formation after balloon injury or arterial stenting. These data provide the first evidence that inhibition of miR-92a may represent a novel strategy to improve endothelial regeneration and reduce restenosis after vascular injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355. doi:10.1038/nature02871

    Article  PubMed  CAS  Google Scholar 

  2. Baker M, Robinson SD, Lechertier T, Barber PR, Tavora B, D’Amico G, Jones DT, Vojnovic B, Hodivala-Dilke K (2011) Use of the mouse aortic ring assay to study angiogenesis. Nat Protoc 22(7):89–104. doi:10.1038/nprot.2011.435

    Article  Google Scholar 

  3. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. doi:10.1016/S0092-8674(04)00045-5

    Article  PubMed  CAS  Google Scholar 

  4. Bavry AA, Kumbhani DJ, Helton TJ, Bhatt DL (2005) Risk of thrombosis with the use of sirolimus-eluting stents for percutaneous coronary intervention (from registry and clinical trial data). Am J Cardiol 95:1469–1472. doi:10.1016/j.amjcard.2005.02.015

    Article  PubMed  CAS  Google Scholar 

  5. Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K, Chavakis E, Potente M, Tjwa M, Urbich C, Zeiher AM, Dimmeler S (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324:1710–1713. doi:10.1126/science.1174381

    Article  PubMed  CAS  Google Scholar 

  6. Camenzind E, Steg PG, Wijns W (2007) Stent thrombosis late after implantation of first-generation drug-eluting stents: a cause for concern. Circulation 115:1440–1455. doi:10.1161/CIRCULATIONAHA.106.666800

    Article  PubMed  Google Scholar 

  7. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 19(473):298–307. doi:10.1038/nature10144

    Article  Google Scholar 

  8. Chai J, Jones MK, Tarnawski AS (2004) Serum response factor is a critical requirement for VEGF signaling in endothelial cells and VEGF-induced angiogenesis. FASEB J 18:1264–1266. doi:10.1096/fj.03-1232fje

    PubMed  CAS  Google Scholar 

  9. Cowan CE, Kohler EE, Dugan TA, Mirza MK, Malik AB, Wary KK (2010) Kruppel-like factor-4 transcriptionally regulates VE-cadherin expression and endothelial barrier function. Circ Res 107:959–966. doi:10.1161/CIRCRESAHA.110.219592

    Article  PubMed  CAS  Google Scholar 

  10. Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, Furth EE, Lee WM, Enders GH, Mendell JT, Thomas-Tikhonenko A (2006) Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38:1060–1065. doi:10.1038/ng1855

    Article  PubMed  CAS  Google Scholar 

  11. Drexler H (1999) Nitric oxide and coronary endothelial dysfunction in humans. Cardiovasc Res 43:572–579. doi:10.1016/S0008-6363(99)00152-2

    Article  PubMed  CAS  Google Scholar 

  12. Fleming Y, Armstrong CG, Morrice N, Paterson A, Goedert M, Cohen P (2000) Synergistic activation of stress-activated protein kinase 1/c-Jun N-terminal kinase (SAPK1/JNK) isoforms by mitogen-activated protein kinase kinase 4 (MKK4) and MKK7. Biochem J 352:145–154

    Article  PubMed  CAS  Google Scholar 

  13. Forough R, Koyama N, Hasenstab D, Lea H, Clowes M, Nikkari ST, Clowes AW (1996) Overexpression of tissue inhibitor of matrix metalloproteinase-1 inhibits vascular smooth muscle cell functions in vitro and in vivo. Circ Res 79:812–820. doi:10.1161/01.RES.79.4.812

    Article  PubMed  CAS  Google Scholar 

  14. Friedrich EB, Werner C, Walenta K, Böhm M, Scheller B (2009) Role of extracellular signal-regulated kinase for endothelial progenitor cell dysfunction in coronary artery disease. Basic Res Cardiol 104:613–620. doi:10.1007/s00395-009-0022-6

    Article  PubMed  CAS  Google Scholar 

  15. Hamik A, Lin Z, Kumar A, Balcells M, Sinha S, Katz J, Feinberg MW, Gerzsten RE, Edelman ER, Jain MK (2007) Kruppel-like factor 4 regulates endothelial inflammation. J Biol Chem 282:13769–13779. doi:10.1074/jbc.M700078200

    Article  PubMed  CAS  Google Scholar 

  16. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833. doi:10.1038/nature03552

    Article  PubMed  CAS  Google Scholar 

  17. Hoffmann R, Mintz GS, Mehran R, Pichard AD, Kent KM, Satler LF, Popma JJ, Wu H, Leon MB (1998) Intravascular ultrasound predictors of angiographic restenosis in lesions treated with Palmaz-Schatz stents. J Am Coll Cardiol 31:43–49. doi:10.1016/S0002-9149(99)00769-9

    Article  PubMed  CAS  Google Scholar 

  18. Indolfi C, Avvedimento VE, Di Lorenzo E, Esposito G, Rapacciuolo A, Giuliano P, Grieco D, Cavuto L, Stingone AM, Ciullo I, Condorelli G, Chiariello M (1997) Activation of cAMP-PKA signaling in vivo inhibits smooth muscle cell proliferation induced by vascular injury. Nat Med 3:775–779. doi:10.1038/nm0797-775

    Article  PubMed  CAS  Google Scholar 

  19. Indolfi C, Avvedimento EV, Rapacciuolo A, Di Lorenzo E, Esposito G, Stabile E, Feliciello A, Mele E, Giuliano P, Condorelli G (1995) Inhibition of cellular Ras prevents smooth muscle cell proliferation after vascular injury in vivo. Nat Med 1:541–545. doi:10.1038/nm0695-541

    Article  PubMed  CAS  Google Scholar 

  20. Indolfi C, Avvedimento EV, Rapacciuolo A, Esposito G, Di Lorenzo E, Leccia A, Pisani A, Chieffo A, Coppola A, Chiariello M (1997) In vivo gene transfer: prevention of neointima formation by inhibition of mitogen-activated protein kinase kinase. Basic Res Cardiol 92:378–384. doi:10.1007/BF00796211

    PubMed  CAS  Google Scholar 

  21. Indolfi C, Di Lorenzo E, Rapacciuolo A, Stingone AM, Stabile E, Leccia A, Torella D, Caputo R, Ciardiello F, Tortora G, Chiariello M (2000) 8-chloro-cAMP inhibits smooth muscle cell proliferation in vitro and neointima formation induced by balloon injury in vivo. J Am Coll Cardiol 36:288–293. doi:10.1016/S0735-1097(00)00679-3

    Article  PubMed  CAS  Google Scholar 

  22. Indolfi C, Esposito G, Di Lorenzo E, Rapacciuolo A, Feliciello A, Porcellini A, Avvedimento VE, Condorelli M, Chiariello M (1995) Smooth muscle cell proliferation is proportional to the degree of balloon injury in a rat model of angioplasty. Circulation 92:1230–1235. doi:10.1161/01.CIR.92.5.1230

    Article  PubMed  CAS  Google Scholar 

  23. Indolfi C, Esposito G, Stabile E, Cavuto L, Pisani A, Coppola C, Torella D, Perrino C, Di Lorenzo E, Curcio A, Palombini L, Chiariello M (2000) A new rat model of small vessel stenting. Basic Res Cardiol 95:179–185. doi:10.1007/s003950050180

    Article  PubMed  CAS  Google Scholar 

  24. Indolfi C, Gasparri C, Vicinanza C, De Serio D, Boncompagni D, Mongiardo A, Spaccarotella C, Agosti V, Torella D, Curcio A (2011) Mitogen-activated protein kinases activation in T lymphocytes of patients with acute coronary syndromes. Basic Res Cardiol 106:667–679. doi:10.1007/s00395-011-0172-1

    Article  PubMed  CAS  Google Scholar 

  25. Indolfi C, Pavia M, Angelillo IF (2005) Drug-eluting stents versus bare metal stents in percutaneous coronary interventions (a meta-analysis). Am J Cardiol 95:1146–1152. doi:10.1016/j.amjcard.2005.01.040

    Article  PubMed  CAS  Google Scholar 

  26. Indolfi C, Torella D, Coppola C, Curcio A, Rodriguez F, Bilancio A, Leccia A, Arcucci O, Falco M, Leosco D, Chiariello M (2002) Physical training increases eNOS vascular expression and activity and reduces restenosis after balloon angioplasty or arterial stenting in rats. Circ Res 91:1190–1197. doi:10.1161/01.RES.0000046233.94299.D6

    Article  PubMed  CAS  Google Scholar 

  27. Kleinbongard P, Heusch G, Schulz R (2010) TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther 127:295–314. http://dx.doi.org/10.1016/j.pharmthera.2010.05.002

    Google Scholar 

  28. Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333. doi:10.1038/nprot.2007.30

    Article  PubMed  CAS  Google Scholar 

  29. Liu MW, Roubin GS, King SB (1989) Restenosis after coronary angioplasty. Potential biologic determinants and role of intimal hyperplasia. Circulation 79:1374–1387. doi:10.1161/01.CIR.79.6.1374

    Article  PubMed  CAS  Google Scholar 

  30. Lorenzen JM, Martino F, Thum T (2012) Epigenetic modifications in cardiovascular disease. Basic Res Cardiol 107:245. doi:10.1007/s00395-012-0245-9

    Article  PubMed  Google Scholar 

  31. Marx SO, Totary-Jain H, Marks AR (2011) Vascular smooth muscle cell proliferation in restenosis. Circ Cardiovasc Interv 4:104–111. doi:10.1161/CIRCINTERVENTIONS.110.957332

    Article  PubMed  CAS  Google Scholar 

  32. Meder B, Keller A, Vogel B, Haas J, Sedaghat-Hamedani F, Kayvanpour E, Just S, Borries A, Rudloff J, Leidinger P, Meese E, Katus HA, Rottbauer W (2011) MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Res Cardiol 106:13–23. doi:10.1007/s00395-010-0123-2

    Article  PubMed  CAS  Google Scholar 

  33. Nam D, Ni CW, Rezvan A, Suo J, Budzyn K, Llanos A, Harrison D, Giddens D, Jo H (2009) Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. Am J Physiol Heart Circ Physiol 297:1535–1543. doi:10.1152/ajpheart.00510.2009

    Article  Google Scholar 

  34. Oppermann M, Suvorava T, Freudenberger T, Dao VT, Fischer JW, Weber M, Kojda G (2011) Regulation of vascular guanylyl cyclase by endothelial nitric oxide-dependent posttranslational modification. Basic Res Cardiol 106:539–549. doi:10.1007/s00395-011-0160-5

    Article  PubMed  CAS  Google Scholar 

  35. Ohtani K, Dimmeler S (2011) Control of cardiovascular differentiation by microRNAs. Basic Res Cardiol 106:5–11. doi:10.1007/s00395-010-0139-7

    Article  PubMed  CAS  Google Scholar 

  36. Qi YX, Jiang J, Jiang XH, Wang XD, Ji SY, Han Y, Long DK, Shen BR, Yan ZQ, Chien S, Jiang ZL (2011) PDGF-BB and TGF-{beta}1 on cross-talk between endothelial and smooth muscle cells in vascular remodeling induced by low shear stress. Proc Natl Acad Sci USA 108:1908–1913. doi:10.1073/pnas.1019219108

    Article  PubMed  CAS  Google Scholar 

  37. Rajewsky N (2006) MicroRNA target predictions in animals. Nat Genet 38:S8–S13. doi:10.1038/ng1798

    Article  PubMed  CAS  Google Scholar 

  38. Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990 s. Nature 362:801–809. doi:10.1038/362801a0

    Article  PubMed  CAS  Google Scholar 

  39. Salameh A, Galvagni F, Bardelli M, Bussolino F, Oliviero S (2005) Direct recruitment of CRK and GRB2 to VEGFR-3 induces proliferation, migration, and survival of Endothelial cells through the activation of ERK, AKT, and JNK pathways. Blood 106:3423–3431. doi:10.1182/blood-2005-04-1388

    Article  PubMed  CAS  Google Scholar 

  40. Sivritas D, Becher MU, Ebrahimian T, Arfa O, Rapp S, Bohner A, Mueller CF, Umemura T, Wassmann S, Nickenig G, Wassmann K (2011) Antiproliferative effect of estrogen in vascular smooth muscle cells is mediated by Kruppel-like factor-4 and manganese superoxide dismutase. Basic Res Cardiol 106:563–575. doi:10.1007/s00395-011-0174-z

    Article  PubMed  CAS  Google Scholar 

  41. Small EM, Olson EN (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature 469:336–342. doi:10.1038/nature09783

    Article  PubMed  CAS  Google Scholar 

  42. Suehiro J, Hamakubo T, Kodama T, Aird WC, Minami T (2010) Vascular endothelial growth factor activation of endothelial cells is mediated by early growth response-3. Blood 115:2520–2532. doi:10.1182/blood-2009-07-233478

    Article  PubMed  CAS  Google Scholar 

  43. Torella D, Iaconetti C, Catalucci D, Ellison GM, Leone A, Waring CD, Bochicchio A, Vicinanza C, Aquila I, Curcio A, Condorelli G, Indolfi C (2011) MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo. Circ Res 109:880–893. doi:10.1161/CIRCRESAHA.111.240150

    Article  PubMed  CAS  Google Scholar 

  44. Walter DH, Cejna M, Diaz-Sandoval L, Willis S, Kirkwood L, Stratford PW, Tietz AB, Kirchmair R, Silver M, Curry C, Wecker A, Yoon YS, Heidenreich R, Hanley A, Kearney M, Tio FO, Kuenzler P, Isner JM, Losordo DW (2004) Local gene transfer of phVEGF-2 plasmid by gene-eluting stents: an alternative strategy for inhibition of restenosis. Circulation 110:36–45. doi:10.1161/01.CIR.0000133324.38115.0A

    Article  PubMed  CAS  Google Scholar 

  45. Wu W, Xiao H, Laguna-Fernandez A, Villarreal G Jr, Wang KC, Geary GG, Zhang Y, Wang WC, Huang HD, Zhou J, Li YS, Chien S, Garcia-Cardena G, Shyy JY (2011) Flow-dependent regulation of Kruppel-like factor 2 is mediated by MicroRNA-92a. Circulation 124:633–641. doi:10.1161/CIRCULATIONAHA.110.005108

    Article  PubMed  CAS  Google Scholar 

  46. Zhang W, Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12:9–18. doi:10.1038/sj.cr.7290105

    Article  PubMed  CAS  Google Scholar 

  47. Zhang C, Wu J, Xu X, Potter BJ, Gao X (2010) Direct relationship between levels of TNF-alpha expression and endothelial dysfunction in reperfusion injury. Basic Res Cardiol 105:453–464. doi:10.1007/s00395-010-0083-6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This manuscript was dedicated to the memory of Massimo Chiariello, MD. This work was supported by the Italian Ministry of Health (Ricerca Finalizzata 2007, APICE Project) and Cardiovascular Research Association (Genecor).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciro Indolfi.

Additional information

C. Iaconetti and A. Polimeni have contributed equally to this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 503 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iaconetti, C., Polimeni, A., Sorrentino, S. et al. Inhibition of miR-92a increases endothelial proliferation and migration in vitro as well as reduces neointimal proliferation in vivo after vascular injury. Basic Res Cardiol 107, 296 (2012). https://doi.org/10.1007/s00395-012-0296-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-012-0296-y

Keywords

Navigation