Skip to main content
Log in

An in vivo molecular imaging probe 18F-Annexin B1 for apoptosis detection by PET/CT: preparation and preliminary evaluation

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

There is an increasing need to develop non-invasive molecular imaging strategies for visualizing and quantifying apoptosis status of diseases (especially for cancer) for diagnosis and monitoring treatment response. Since externalization of phosphatidylserine (PS) is one of the early molecular events during apoptosis, Annexin B1 (AnxB1), a member of Annexins family with high affinity toward the head group of PS, could be a potential positron emission tomography (PET) imaging probe for imaging cell death process after labeled by positron-emitting nuclides, such as 18F. In the present study, we investigated a novel PET probe, 18F-labeled Annexin B1 (18F-AnxB1), for apoptosis imaging. 18F-AnxB1 was prepared reliably by conjugating AnxB1 with a 18F-tag, N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB), in a radiolabeling yield of about 20 % within 40 min. The in vitro binding of 18F-AnxB1 with apoptotic cells induced by anti-Fas antibody showed twofold increase compared to those without treatment, confirmed by flow cytometric analysis with AnxV-FITC/PI staining. Stability tests demonstrated 18F-AnxB1 was rather stable in vitro and in vivo without degradation. The serial 18F-AnxB1 PET/CT scans in healthy rats outlined its biodistribution and pharmacokinetics, indicating a rapid renal clearance and predominant accumulation into kidney and bladder at 2 h p.i. 18F-AnxB1 PET/CT imaging was successfully applied to visualize in vivo apoptosis sites in tumor induced by chemotherapy and in kidney simulated by ischemia–reperfusion injury. The high-contrast images were obtained at 2 h p.i. to delineate apoptotic tumor. Apoptotic region could be still identified by 18F-AnxB1 PET 4 h p.i., despite the high probe retention in kidneys. In summary, we have developed 18F-AnxB1 as a PS-specific PET probe for the apoptosis detection and quantification which could have broad applications from disease diagnosis to treatment monitoring, especially in the cases of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    Article  PubMed  CAS  Google Scholar 

  2. Kerr JF, Winterford CM, Harmon BV (1994) Apoptosis. Its significance in cancer and cancer therapy. Cancer 73:2013–2026

    Article  PubMed  CAS  Google Scholar 

  3. Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411:342–348

    Article  PubMed  CAS  Google Scholar 

  4. Kapty J, Murray D, Mercer J (2010) Radiotracers for noninvasive molecular imaging of tumor cell death. Cancer Biother Radiopharm 25:615–628

    Article  PubMed  Google Scholar 

  5. Niu G, Chen X (2010) Apoptosis imaging: beyond annexin V. J Nucl Med 51:1659–1662

    Article  PubMed  CAS  Google Scholar 

  6. Blankenberg FG, Strauss HW (2001) Will imaging of apoptosis play a role in clinical care? A tale of mice and men. Apoptosis 6:117–123

    Article  PubMed  CAS  Google Scholar 

  7. Blankenberg FG, Tait J, Ohtsuki K, Strauss HW (2000) Apoptosis: the importance of nuclear medicine. Nucl Med Commun 21:241–250

    Article  PubMed  CAS  Google Scholar 

  8. Reshef A, Shirvan A, Akselrod-Ballin A, Wall A, Ziv I (2010) Small-molecule biomarkers for clinical PET imaging of apoptosis. J Nucl Med 51:837–840

    Article  PubMed  CAS  Google Scholar 

  9. Kartachova MS, Verheij M, van Eck BL, Hoefnagel CA, Olmos RA (2008) Radionuclide imaging of apoptosis in malignancies: promise and pitfalls of 99mTc-Hynic-rh-Annexin V imaging. Clin Med Oncol 2:319–325

    PubMed  CAS  Google Scholar 

  10. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  PubMed  CAS  Google Scholar 

  11. Schutters K, Reutelingsperger C (2010) Phosphatidylserine targeting for diagnosis and treatment of human diseases. Apoptosis 15:1072–1082

    Article  PubMed  CAS  Google Scholar 

  12. Burtea C, Laurent S, Lancelot E et al (2009) Peptidic targeting of phosphatidylserine for the MRI detection of apoptosis in atherosclerotic plaques. Mol Pharm 6:1903–1919

    Article  PubMed  CAS  Google Scholar 

  13. Lahorte CM, Vanderheyden JL, Steinmetz N, Van de Wiele C, Dierckx RA, Slegers G (2004) Apoptosis-detecting radioligands: current state of the art and future perspectives. Eur J Nucl Med Mol Imaging 31:887–919

    Article  PubMed  CAS  Google Scholar 

  14. Belhocine TZ, Tait JF, Vanderheyden JL, Li C, Blankenberg FG (2004) Nuclear medicine in the era of genomics and proteomics: lessons from annexin V. J Proteome Res 3:345–349

    Article  PubMed  CAS  Google Scholar 

  15. Boersma HH, Kietselaer BL, Stolk LM et al (2005) Past, present, and future of annexin A5: from protein discovery to clinical applications. J Nucl Med 46:2035–2050

    PubMed  CAS  Google Scholar 

  16. Blankenberg FG, Katsikis PD, Tait JF et al (1998) In vivo detection and imaging of phosphatidylserine expression during programmed cell death. Proc Natl Acad Sci USA 95:6349–6354

    Article  PubMed  CAS  Google Scholar 

  17. Yagle KJ, Eary JF, Tait JF et al (2005) Evaluation of 18F-annexin V as a PET imaging agent in an animal model of apoptosis. J Nucl Med 46:658–666

    PubMed  CAS  Google Scholar 

  18. Toretsky J, Levenson A, Weinberg IN, Tait JF, Uren A, Mease RC (2004) Preparation of F-18 labeled annexin V: a potential PET radiopharmaceutical for imaging cell death. Nucl Med Biol 31:747–752

    Article  PubMed  CAS  Google Scholar 

  19. Keen HG, Dekker BA, Disley L et al (2005) Imaging apoptosis in vivo using 124I-annexin V and PET. Nucl Med Biol 32:395–402

    Article  PubMed  CAS  Google Scholar 

  20. Hu S, Kiesewetter DO, Zhu L et al (2012) Longitudinal PET imaging of doxorubicin-induced cell death with 18F-Annexin V. Mol Imaging Biol 14:762–770

    Article  PubMed  Google Scholar 

  21. Grierson JR, Yagle KJ, Eary JF et al (2004) Production of [F-18]fluoroannexin for imaging apoptosis with PET. Bioconjug Chem 15:373–379

    Article  PubMed  CAS  Google Scholar 

  22. Bauwens M, De Saint-Hubert M, Devos E et al (2011) Site-specific 68Ga-labeled Annexin A5 as a PET imaging agent for apoptosis. Nucl Med Biol 38:381–392

    Article  PubMed  CAS  Google Scholar 

  23. Zhang Y, Guo YJ, Sun SH, Yan HL, He Y (2004) Non-fusion expression in Escherichia coli, purification, and characterization of a novel Ca2+− and phospholipid-binding protein annexin B1. Protein Expr Purif 34:68–74

    Article  PubMed  CAS  Google Scholar 

  24. Wang F, Luo QY, He Y, Sun SH (2007) Screening, purification, and identification of annexin B1 mutants with high phosphatidylserine-binding activity and reduced immunogenicity. Appl Microbiol Biotechnol 75:539–548

    Article  PubMed  CAS  Google Scholar 

  25. Luo QY, Zhang ZY, Wang F, Lu HK, Guo YZ, Zhu RS (2005) Preparation, in vitro and in vivo evaluation of 99mTc-Annexin B1: a novel radioligand for apoptosis imaging. Biochem Biophys Res Commun 335:1102–1106

    Article  PubMed  CAS  Google Scholar 

  26. Luo QY, Wang F, Zhang ZY et al (2008) Preparation and bioevaluation of 99mTc-HYNIC-annexin B1 as a novel radioligand for apoptosis imaging. Apoptosis 13:600–608

    Article  PubMed  CAS  Google Scholar 

  27. Ding FX, Yan HL, Mei Q et al (2007) A novel, cheap and effective fusion expression system for the production of recombinant proteins. Appl Microbiol Biotechnol 77:483–488

    Article  PubMed  CAS  Google Scholar 

  28. Hoglund J, Shirvan A, Antoni G et al (2011) 18F-ML-10, a PET tracer for apoptosis: first human study. J Nucl Med 52:720–725

    Article  PubMed  Google Scholar 

  29. Allen A, Ben-Ami M, Reshef A et al (2012) Assessment of response of brain metastases to radiotherapy by PET imaging of apoptosis with 18F-ML-10. Eur J Nucl Med Mol Imaging 39:1400–1408

    Article  PubMed  Google Scholar 

  30. Reshef A, Shirvan A, Waterhouse RN et al (2008) Molecular imaging of neurovascular cell death in experimental cerebral stroke by PET. J Nucl Med 49:1520–1528

    Article  PubMed  CAS  Google Scholar 

  31. Edgington LE, Berger AB, Blum G et al (2009) Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes. Nat Med 15:967–973

    Article  PubMed  CAS  Google Scholar 

  32. Murakami Y, Takamatsu H, Taki J et al (2004) 18F-labelled annexin V: a PET tracer for apoptosis imaging. EurJ Nucl Med Mol Imaging 31:469–474

    Article  CAS  Google Scholar 

  33. Li X, Link JM, Stekhova S et al (2008) Site-specific labeling of annexin V with F-18 for apoptosis imaging. Bioconjug Chem 19:1684–1688

    Article  PubMed  CAS  Google Scholar 

  34. Kapty J, Kniess T, Wuest F, Mercer JR (2011) Radiolabeling of phosphatidylserine-binding peptides with prosthetic groups N-[6-(4-[18F]fluorobenzylidene)aminooxyhexyl]maleimide ([18F]FBAM) and N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB). Appl Radiat Isot 69:1218–1225

    Article  PubMed  CAS  Google Scholar 

  35. Wang M-W, Zhang Y-P, Zhang Y-J, Shen C (2011) Module-assisted one-pot synthesis of [18F]SFB for radiolabeling proteins. J Radioanal Nucl Chem 289:191–196

    Article  CAS  Google Scholar 

  36. Vaidyanathan G, Zalutsky M (1992) Labeling proteins with fluorine-18 using N-succinimidyl 4-[18F]fluorobenzoate. Int J Rad Appl Instrum Part B Nucl Med Biol 19:275–281

    Article  CAS  Google Scholar 

  37. Gottlieb RA, Nordberg J, Skowronski E, Babior BM (1996) Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification. Proc Natl Acad Sci USA 93:654–658

    Article  PubMed  CAS  Google Scholar 

  38. Zhao Q, Zhang Y, Wang F et al (2011) Evaluation of 18F-SFB-Annexin B1 in detecting apoptosis. Chin J Nucl Med 31:112–116

    CAS  Google Scholar 

  39. Gonzalez Trotter DE, Manjeshwar RM, Doss M et al (2004) Quantitation of small-animal 124I activity distributions using a clinical PET/CT scanner. J Nucl Med 45:1237–1244

    PubMed  Google Scholar 

  40. Aide N, Desmonts C, Beauregard JM et al (2010) High throughput static and dynamic small animal imaging using clinical PET/CT: potential preclinical applications. Eur J Nucl Med Mol Imaging 37:991–1001

    Article  PubMed  Google Scholar 

  41. Gremse F, Schulz V (2011) Qualitative and quantitative data analysis. In: Kiessling F, Pichler BJ (eds) Small animal imaging. Springer, Berlin/Heidelberg, pp 363–378

    Chapter  Google Scholar 

  42. Mingwei W, Yujia Z, Zhang Y, Yingjian Z (2012) Cancer apoptosis detection by 18F-Annexin B1 and 18F-Annexin V PET/CT imaging: a comparative study. J Nucl Med 53(S1):1700

    Google Scholar 

  43. Shreve PD, Anzai Y, Wahl RL. (1999) Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 19:61–77; quiz 150–151

    Google Scholar 

  44. Sterin-Speziale N, Kahane V, Setton C, Fernandez M, Speziale E (1992) Compartmental study of rat renal phospholipid metabolism. Lipids 27:10–14

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (No. 30700188, No. 11275050).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying-Jian Zhang or Shu-Han Sun.

Additional information

Ming-Wei Wang and Fang Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2,768 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, MW., Wang, F., Zheng, YJ. et al. An in vivo molecular imaging probe 18F-Annexin B1 for apoptosis detection by PET/CT: preparation and preliminary evaluation. Apoptosis 18, 238–247 (2013). https://doi.org/10.1007/s10495-012-0788-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0788-0

Keywords

Navigation