Skip to main content
Log in

Inhibition of checkpoint kinase 1 abrogates G2/M checkpoint activation and promotes apoptosis under heat stress

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Hyperthermia induced by heat stress (HS) inhibits the proliferation of cancer cells and induces their apoptosis. However, the mechanism underlying HS-induced apoptosis remains elusive. Here, we demonstrated a novel evidence that checkpoint kinase 1 (Chk1) plays crucial roles in the apoptosis and regulation of cell cycle progression in cells under HS. In human leukemia Jurkat cells, interestingly, the ataxia telangiectasia and Rad-3 related (ATR)-Chk1 pathway was preferentially activated rather than the ataxia telangiectasia mutated (ATM)-checkpoint kinase 2 (Chk2) pathway under HS. The selective inhibitors of ATR or Chk1 abrogated HS-induced apoptosis in human leukemia Jurkat cells whereas the inhibition of ATM or Chk2 caused only marginal effects. Inhibition of ATR and Chk1 also abrogated G2/M checkpoint activation by HS in Jurkat cells. The effects of small interfering RNA targeting Chk1 were similar to those of the selective inhibitor of Chk1. In addition, the efficiencies of Chk1 inhibition on G2/M checkpoint abrogation and apoptosis induction were confirmed in the adherent cancer cell lines HeLa, HSC3, and PC3, suggesting that the targeting of Chk1 can be effective in solid tumors cells. In conclusion, these findings indicate a novel molecular basis of G2/M checkpoint activation and apoptosis in cells exposed to HS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266

    Article  PubMed  CAS  Google Scholar 

  2. Iliakis G, Krieg T, Guan J, Wang Y, Leeper D (2004) Evidence for an S-phase checkpoint regulating DNA replication after heat shock: a review. Int J Hyperthermia 20:240–249

    Article  PubMed  CAS  Google Scholar 

  3. Dynlacht JR, Xu M, Pandita RK, Wetzel EA, Roti Roti JL (2004) Effects of heat shock on the Mre11/Rad50/Nbs1 complex in irradiated or unirradiated cells. Int J Hyperthermia 20:144–156

    Article  PubMed  CAS  Google Scholar 

  4. Seno JD, Dynlacht JR (2004) Intracellular redistribution and modification of proteins of the Mre11/Rad50/Nbs1 DNA repair complex following irradiation and heat-shock. J Cell Physiol 199:157–170

    Article  PubMed  CAS  Google Scholar 

  5. Takahashi A, Ohnishi T (2005) Does gammaH2AX foci formation depend on the presence of DNA double strand breaks? Cancer Lett 229:171–179

    Article  PubMed  CAS  Google Scholar 

  6. Takahashi A, Matsumoto H, Nagayama K, Kitano M, Hirose S, Tanaka H et al (2004) Evidence for the involvement of double-strand breaks in heat-induced cell killing. Cancer Res 64:8839–8845

    Article  PubMed  CAS  Google Scholar 

  7. Hunt CR, Pandita RK, Laszlo A, Higashikubo R, Agarwal M, Kitamura T et al (2007) Hyperthermia activates a subset of ataxia-telangiectasia mutated effectors independent of DNA strand breaks and heat shock protein 70 status. Cancer Res 67:3010–3017

    Article  PubMed  CAS  Google Scholar 

  8. Laszlo A, Fleischer I (2009) The heat-induced gamma-H2AX response does not play a role in hyperthermic cell killing. Int J Hyperthermia 25:199–209

    Article  PubMed  CAS  Google Scholar 

  9. Kastan MB, Bartek J (2004) Cell-cycle checkpoint and cancer. Nature 432:316–323

    Article  PubMed  CAS  Google Scholar 

  10. Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3:155–168

    Article  PubMed  CAS  Google Scholar 

  11. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078

    Article  PubMed  CAS  Google Scholar 

  12. Gerashchenko BI, Gooding G, Dynlacht JR (2010) Hyperthermia alters the interaction of proteins of the Mre11 complex in irradiated cells. Cytometry A 77:940–952

    PubMed  Google Scholar 

  13. Cann KL, Hicks GG (2007) Regulation of the cellular DNA double-strand break response. Biochem Cell Biol 85:663–674

    Article  PubMed  CAS  Google Scholar 

  14. Kumar S, Dodson GE, Trinh A, Puchalski JR, Tibbetts RS (2005) ATR activation necessary but not sufficient for p53 induction and apoptosis in hydroxyurea-hypersensitive myeloid leukemia cells. Cell Cycle 4:1667–1674

    Article  PubMed  CAS  Google Scholar 

  15. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204

    Article  PubMed  CAS  Google Scholar 

  16. Nueda A, Hudson F, Mivechi NF, Dynan WS (1999) DNA-dependent protein kinase protects against heat-induced apoptosis. J Biol Chem 274:14988–14996

    Article  PubMed  CAS  Google Scholar 

  17. Miyakoda M, Suzuki K, Kodama S, Watanabe M (2002) Activation of ATM and phosphorylation of p53 by heat shock. Oncogene 21:1090–1096

    Article  PubMed  CAS  Google Scholar 

  18. Mitchel RE, Chan A, Smith BP, Child SD, Paterson MC (1984) The effects of hyperthermia and ionizing radiation in normal and ataxia telangiectasia human fibroblast lines. Radiat Res 99:627–635

    Article  PubMed  CAS  Google Scholar 

  19. Raaphorst GP, Azzam EI (1982) The thermal sensitivity of normal and ataxia telangiectasia human fibroblasts. Int J Radiat Oncol Biol Phys 8:1947–1950

    Article  PubMed  CAS  Google Scholar 

  20. Nishida H, Tatewaki N, Nakajima Y, Magara T, Ko KM, Hamamori Y et al (2009) Inhibition of ATR protein kinase activity by schisandrin B in DNA damage response. Nucleic Acids Res 37:5678–5689

    Article  PubMed  CAS  Google Scholar 

  21. Hickson I, Zhao Y, Richardson CJ, Green SJ, Martin NMB, Orr AI et al (2004) Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res 64:9152–9159

    Article  PubMed  CAS  Google Scholar 

  22. Jackson JR, Gilmartin A, Imburgia C, Winkler JD, Marshall LA, Roshak A (2000) An indolocarbazole inhibitor of human checkpoint kinase (Chk1) abrogates cell cycle arrest caused by DNA damage. Cancer Res 60:566–572

    PubMed  CAS  Google Scholar 

  23. Arienti KL, Brunmark A, Axe FU, McClure K, Lee A, Blevitt J et al (2005) Checkpoint kinase inhibitors: SAR and radioprotective properties of a series of 2-arylbenzimidazoles. J Med Chem 48:1873–1885

    Article  PubMed  CAS  Google Scholar 

  24. Yu DY, Zhao QL, Wei ZL, Nomura T, Kashiwakura I, Kagiya TV et al (2009) Enhancement of radiation-induced apoptosis of human lymphoma U937 cells by sanazole. Apoptosis 14:655–664

    Article  PubMed  CAS  Google Scholar 

  25. Yu DY, Zhao QL, Wei ZL, Shehata M, Kondo T (2009) Enhancement of hyperthermia-induced apoptosis by sanazole in human lymphoma U937 cells. Int J Hyperthermia 25:364–373

    Article  PubMed  CAS  Google Scholar 

  26. Zhao QL, Fujiwara Y, Kondo T (2010) Synergistic induction of apoptosis and caspase-independent autophagic cell death by a combination of nitroxide Tempo and heat shock in human leukemia U937 cells. Apoptosis 15:1270–1283

    Article  PubMed  CAS  Google Scholar 

  27. Zhao Q-L, Fujiwara Y, Kondo T (2006) Mechanism of cell death induction by nitroxide and hyperthermia. Free Radic Biol Med 40:1131–1143

    Article  PubMed  CAS  Google Scholar 

  28. Furusawa Y, Tabuchi Y, Takahashi A, Wada S, Ohtsuka K, Kondo T (2009) Gene networks involved in apoptosis induced by hyperthermia in human lymphoma U937 cells. Cell Biol Int 33:1253–1262

    Article  PubMed  CAS  Google Scholar 

  29. Salunga TL, Tabuchi Y, Takasaki I, Feril LB Jr, Zhao QL, Ohtsuka K et al (2007) Identification of genes responsive to paeoniflorin, a heat shock protein-inducing compound, in human leukemia U937 cells. Int J Hyperthermia 23:529–537

    Article  PubMed  CAS  Google Scholar 

  30. Takahashi A, Mori E, Ohnishi T (2010) The foci of DNA double strand break-recognition proteins localize with gammaH2AX after heat treatment. J Radiat Res (Tokyo) 51:91–95

    Article  CAS  Google Scholar 

  31. Ide H, Nakagawa T, Yasuda M, Kamiyama Y, Muto S, Horie S (2008) DNA damage response in prostate cancer cells after high-intensity focused ultrasound (HIFU) treatment. Anticancer Res 28:639–642

    PubMed  CAS  Google Scholar 

  32. Brown EJ, Baltimore D (2000) ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev 14:397–402

    PubMed  CAS  Google Scholar 

  33. de Klein A, Muijtjens M, van Os R, Verhoeven Y, Smit B, Carr AM (2000) Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Curr Biol 10:479–482

    Article  PubMed  Google Scholar 

  34. Eguchi A, Meade BR, Chang YC, Fredrickson CT, Willert K, Puri N et al (2009) Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein. Nat Biotechnol 27:567–571

    Article  PubMed  CAS  Google Scholar 

  35. Kang Y, Cheong HM, Lee JH, Song PI, Lee KH, Kim SY et al (2010) Protein phosphatase 5 is necessary for ATR-mediated DNA repair. Biochem Biophys Res Commun 404:476–481

    Article  PubMed  Google Scholar 

  36. Jazayeri A, Falck J, Lukas C, Bartek J, Smith GC, Lukas J et al (2006) ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 8:37–45

    Article  PubMed  CAS  Google Scholar 

  37. Tomita M (2010) Involvement of DNA-PK and ATM in radiation- and heat-induced DNA damage recognition and apoptotic cell death. J Radiat Res (Tokyo) 51:493–501

    Article  CAS  Google Scholar 

  38. Kim SM, Kumagai A, Lee J, Dunphy WG (2005) Phosphorylation of Chk1 by ATM- and Rad3-related (ATR) in Xenopus egg extracts requires binding of ATRIP to ATR but not the stable DNA-binding or coiled-coil domains of ATRIP. J Biol Chem 280:38355–38364

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by a Grant-in-Aid for Scientific Research (B) (22390229), Japan Society for the Promotion of Science.

Conflicts of interest

No potential conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kondo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 33 kb)

Supplementary material 2 (PPTX 4578 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furusawa, Y., Iizumi, T., Fujiwara, Y. et al. Inhibition of checkpoint kinase 1 abrogates G2/M checkpoint activation and promotes apoptosis under heat stress. Apoptosis 17, 102–112 (2012). https://doi.org/10.1007/s10495-011-0660-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0660-7

Keywords

Navigation