Skip to main content
Log in

The cell cycle, cancer development and therapy

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The process of cell division plays a vital role in cancer progression. Cell proliferation and error-free chromosomes segregation during mitosis are central events in life cycle. Mistakes during cell division generate changes in chromosome content and alter the balances of chromosomes number. Any defects in expression of TIF1 family proteins, SAC proteins network, mitotic checkpoint proteins involved in chromosome mis-segregation and cancer development. Here we discuss the function of organelles deal with the chromosome segregation machinery, proteins and correction mechanisms involved in the accurate chromosome segregation during mitosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Petry S (2016) Mechanisms of mitotic spindle assembly. Annu Rev Biochem 85:659–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Westhorpe FG, Straight AF (2014) The centromere: epigenetic control of chromosome segregation during mitosis. Cold Spring Harb Perspect Biol 7:a015818

    Article  PubMed  Google Scholar 

  3. Levine MS, Holland AJ (2018) The impact of mitotic errors on cell proliferation and tumorigenesis. Genes Dev 32:620–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Potapova T, Gorbsky GJ (2017) The consequences of chromosome segregation errors in mitosis and meiosis. Biology 6

  5. Ricke RM, van Deursen JM (2013) Aneuploidy in health, disease, and aging. J Cell Biol 201:11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wenzel ES, Singh ATK (2018) Cell-cycle checkpoints and aneuploidy on the path to cancer. In Vivo 32:1–5

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Barnum KJ, O’Connell MJ (2014) Cell cycle regulation by checkpoints. Methods Mol Biol 1170:29–40

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sansregret L, Swanton C (2017) The role of aneuploidy in cancer evolution. Cold Spring Harb Perspect Med 7:a028373

    Article  PubMed  PubMed Central  Google Scholar 

  9. McVey SL, Cosby JK, Nannas NJ (2021) Aurora B tension sensing mechanisms in the kinetochore ensure accurate chromosome segregation. Int J Mol Sci 22:8818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yao Y, Dai W (2014) Genomic instability and cancer. J Carcinog Mutagen 5:1000165

    PubMed  PubMed Central  Google Scholar 

  11. Kumar R, Nagpal G, Kumar V, Usmani SS, Agrawal P, Raghava GPS (2019) HumCFS: a database of fragile sites in human chromosomes. BMC Genomics 19:985

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lee JK, Choi YL, Kwon M, Park PJ (2016) Mechanisms and consequences of cancer genome instability: lessons from genome sequencing studies. Annu Rev Pathol 11:283–312

    Article  CAS  PubMed  Google Scholar 

  13. Pikor L, Thu K, Vucic E, Lam W (2013) The detection and implication of genome instability in cancer. Cancer Metastasis Rev 32:341–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Burrell RA, McGranahan N, Bartek J, Swanton C (2013) The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501:338

    Article  CAS  PubMed  Google Scholar 

  15. Vieira MLC, Santini L, Diniz AL, Munhoz CF (2016) Microsatellite markers: what they mean and why they are so useful. Genet Mol Biol 39:312–328

  16. Cortes-Ciriano I, Lee S, Park W-Y, Kim T-M, Park PJ (2017) A molecular portrait of microsatellite instability across multiple cancers. Nat Commun 8:15180–15180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Duijf PHG, Nanayakkara D, Nones K, Srihari S, Kalimutho M, Khanna KK (2019) Mechanisms of genomic instability in breast cancer. Trends Mol Med 25:595–611

    Article  CAS  PubMed  Google Scholar 

  18. Ferguson LR, Chen H, Collins AR, Connell M, Damia G, Dasgupta S, Malhotra M, Meeker AK, Amedei A, Amin A, Ashraf SS, Aquilano K, Azmi AS, Bhakta D, Bilsland A, Boosani CS, Chen S, Ciriolo MR, Fujii H, Guha G, Halicka D, Helferich WG, Keith WN, Mohammed SI, Niccolai E, Yang X, Honoki K, Parslow VR, Prakash S, Rezazadeh S, Shackelford RE, Sidransky D, Tran PT, Yang ES, Maxwell CA (2015) Genomic instability in human cancer: molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition. Sem Cancer Biol 35:S5–S24

    Article  Google Scholar 

  19. McAvera RM, Crawford LJ (2020) TIF1 proteins in genome stability and cancer. Cancers 12:2094

    Article  CAS  PubMed Central  Google Scholar 

  20. Herquel B, Ouararhni K, Khetchoumian K, Ignat M, Teletin M, Mark M, Béchade G, Van Dorsselaer A, Sanglier-Cianférani S, Hamiche A, Cammas F, Davidson I, Losson R (2011) Transcription cofactors TRIM24, TRIM28, and TRIM33 associate to form regulatory complexes that suppress murine hepatocellular carcinoma. Proc Natl Acad Sci 108:8212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pommier RM, Gout J, Vincent DF, Alcaraz LB, Chuvin N, Arfi V, Martel S, Kaniewski B, Devailly G, Fourel G, Bernard P, Moyret-Lalle C, Ansieau S, Puisieux A, Valcourt U, Sentis S, Bartholin L (2015) TIF1γ suppresses tumor progression by regulating mitotic checkpoints and chromosomal stability. Cancer Res 75:4335–4350

    Article  CAS  PubMed  Google Scholar 

  22. Pesenti ME, Weir JR, Musacchio A (2016) Progress in the structural and functional characterization of kinetochores. Curr Opin Struct Biol 37:152–163

    Article  CAS  PubMed  Google Scholar 

  23. Prosser SL, Pelletier L (2017) Mitotic spindle assembly in animal cells: a fine balancing act. Nat Rev Mol Cell Biol 18:187–201

    Article  CAS  PubMed  Google Scholar 

  24. Bancroft J, Auckland P, Samora CP, McAinsh AD (2015) Chromosome congression is promoted by CENP-Q- and CENP-E-dependent pathways. J Cell Sci 128:171–184

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Prosser SL, Pelletier L (2017) Mitotic spindle assembly in animal cells: a fine balancing act. Nat Rev Mol Cell Biol 18:187

    Article  CAS  PubMed  Google Scholar 

  26. Vigneron S, Prieto S, Bernis C, Labbé J-C, Castro A, Lorca T (2004) Kinetochore localization of spindle checkpoint proteins: who controls whom? Mol Biol Cell 15:4584–4596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Diogo V, Teixeira J, Silva PMA, Bousbaa H (2017) Spindle assembly checkpoint as a potential target in colorectal cancer: current status and future perspectives. Clin Colorectal Cancer 16:1–8

    Article  PubMed  Google Scholar 

  28. Garcia YA, Velasquez EF, Gao LW, Cheung K, Clutario KM, Williams-Hamilton T, Gholkar AA, Whitelegge JP, Torres JZ (2020) Dissection of the spindle assembly checkpoint by proximity proteomics. bioRxiv, 2020.2006.2004.133710

  29. Alhmoud JF, Woolley JF, Moustafa A, Malki MI (2020) DNA damage/repair management in cancers. Cancers 12:1050

    Article  CAS  PubMed Central  Google Scholar 

  30. Vleugel M, Hoogendoorn E, Snel B, Kops GJ (2012) Evolution and function of the mitotic checkpoint. Dev Cell 23:239–250

    Article  CAS  PubMed  Google Scholar 

  31. Gay S (2018) A novel function for the mitotic checkpoint protein Mad2p in translation. Mol Cell Oncol 5:e1494949–e1494949

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mirkovic M, Hutter LH, Novák B, Oliveira RA (2015) Premature sister chromatid separation is poorly detected by the spindle assembly checkpoint as a result of system-level feedback. Cell Rep 13:469–478

    Article  CAS  PubMed  Google Scholar 

  33. Thompson SL, Bakhoum SF, Compton DA (2010) Mechanisms of chromosomal instability. Curr Biol 20:R285-295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bakhoum SF, Kabeche L, Murnane JP, Zaki BI, Compton DA (2014) DNA-damage response during mitosis induces whole-chromosome missegregation. Cancer Discov 4:1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nicholson JM, Cimini D (2011) How mitotic errors contribute to karyotypic diversity in cancer. In: Gisselsson D (ed) Advances in cancer research. Academic Press, pp 43–75

  36. Gonczy P (2015) Centrosomes and cancer: revisiting a long-standing relationship. Nat Rev Cancer 15:639–652

    Article  CAS  PubMed  Google Scholar 

  37. Bobinnec Y, Khodjakov A, Mir LM, Rieder CL, Eddé B, Bornens M (1998) Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J Cell Biol 143:1575–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Raff JW, Basto R (2017) Centrosome amplification and cancer: a question of sufficiency. Dev Cell 40:217–218

    Article  CAS  PubMed  Google Scholar 

  39. Conduit PT, Wainman A, Raff JW (2015) Centrosome function and assembly in animal cells. Nat Rev Mol Cell Biol 16:611

    Article  CAS  PubMed  Google Scholar 

  40. Gönczy P, Hatzopoulos GN (2019) Centriole assembly at a glance. J Cell Sci 132:jcs228833

    Article  PubMed  Google Scholar 

  41. Wang JT, Kong D, Hoerner CR, Loncarek J, Stearns T (2017) Centriole triplet microtubules are required for stable centriole formation and inheritance in human cells. eLife 6:e29061

  42. Darling S, Fielding AB, Sabat-Pośpiech D, Prior IA, Coulson JM (2017) Regulation of the cell cycle and centrosome biology by deubiquitylases. Biochem Soc Trans 45:1125–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nam H-J, Naylor R, van Deursen JM (2015) Centrosome dynamics as a source of chromosomal instability. Trends Cell Biol 25:65–73

    Article  CAS  PubMed  Google Scholar 

  44. Silkworth WT, Nardi IK, Paul R, Mogilner A, Cimini D (2012) Timing of centrosome separation is important for accurate chromosome segregation. Mol Biol Cell 23:401–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jusino S, Fernández-Padín FM, Saavedra HI (2018) Centrosome aberrations and chromosome instability contribute to tumorigenesis and intra-tumor heterogeneity. J Cancer Meta Treat 4(8)

  46. Wu Q, Li B, Liu L, Sun S, Sun S (2020) Centrosome dysfunction: a link between senescence and tumor immunity. Signal Transduct Target Therapy 5:107

    Article  Google Scholar 

  47. Cosenza MR, Cazzola A, Rossberg A, Schieber NL, Konotop G, Bausch E, Slynko A, Holland-Letz T, Raab MS, Dubash T, Glimm H, Poppelreuther S, Herold-Mende C, Schwab Y, Krämer A (2017) Asymmetric centriole numbers at spindle poles cause chromosome missegregation in cancer. Cell Rep 20:1906–1920

    Article  CAS  PubMed  Google Scholar 

  48. Lopes CAM, Mesquita M, Cunha AI, Cardoso J, Carapeta S, Laranjeira C, Pinto AE, Pereira-Leal JB, Dias-Pereira A, Bettencourt-Dias M, Chaves P (2018) Centrosome amplification arises before neoplasia and increases upon p53 loss in tumorigenesis. J Cell Biol

  49. LoMastro GM, Holland AJ (2019) The emerging link between centrosome aberrations and metastasis. Dev Cell 49:325–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rivera-Rivera Y, Saavedra HI (2016) Centrosome—a promising anti-cancer target. Biologics 10:167–176

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Westhorpe FG, Straight AF (2014) The centromere: epigenetic control of chromosome segregation during mitosis. Cold Spring Harbor Perspect Biol 7:015818–015818

    Google Scholar 

  52. Kursel LE, Malik HS (2016) Centromeres. Curr Biol 26:R487–R490

    Article  CAS  PubMed  Google Scholar 

  53. Verdaasdonk JS, Bloom K (2011) Centromeres: unique chromatin structures that drive chromosome segregation. Nat Rev Mol Cell Biol 12:320–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McKinley KL, Cheeseman IM (2016) The molecular basis for centromere identity and function. Nat Rev Mol Cell Biol 17:16–29

    Article  CAS  PubMed  Google Scholar 

  55. McKinley KL, Cheeseman IM (2015) The molecular basis for centromere identity and function. Nat Rev Mol Cell Biol 17:16

    Article  PubMed  PubMed Central  Google Scholar 

  56. Perpelescu M, Fukagawa T (2011) The ABCs of CENPs. Chromosoma 120:425–446

    Article  PubMed  Google Scholar 

  57. Westhorpe FG, Straight AF (2013) Functions of the centromere and kinetochore in chromosome segregation. Curr Opin Cell Biol 25:334–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cleveland DW, Mao Y, Sullivan KF (2003) Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112:407–421

    Article  CAS  PubMed  Google Scholar 

  59. Valdivia M, Hamdouch M, Ortiz K, Astola A (2009) CENPA a genomic marker for centromere activity and human diseases. Curr Genom 10:326–335

    Article  CAS  Google Scholar 

  60. Tachiwana H, Kagawa W, Shiga T, Osakabe A, Miya Y, Saito K, Hayashi-Takanaka Y, Oda T, Sato M, Park SY, Kimura H, Kurumizaka H (2011) Crystal structure of the human centromeric nucleosome containing CENP-A. Nature 476:232–235

    Article  CAS  PubMed  Google Scholar 

  61. McKinley KL, Cheeseman IM (2014) Polo-like Kinase 1 Licenses CENP-A Deposition at Centromeres. Cell 158:397–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Falk SJ, Guo LY, Sekulic N, Smoak EM, Mani T, Logsdon GA, Gupta K, Jansen LET, Van Duyne GD, Vinogradov SA, Lampson MA, Black BE (2015) CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere. Sci (New York N Y) 348:699

    Article  CAS  Google Scholar 

  63. Hinshaw SM, Makrantoni V, Harrison SC, Marston AL (2017) The kinetochore receptor for the Cohesin loading complex. Cell 171:72-84.e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gascoigne KE, Takeuchi K, Suzuki A, Hori T, Fukagawa T, Cheeseman IM (2011) Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 145:410–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huis In ‘t Veld PJ, Jeganathan S, Petrovic A, Singh P, John J, Krenn V, Weissmann F, Bange T, Musacchio A. Molecular basis of outer kinetochore assembly on CENP-T. eLife 5:e21007

  66. Weir JR, Faesen AC, Klare K, Petrovic A, Basilico F, Fischböck J, Pentakota S, Keller J, Pesenti ME, Pan D, Vogt D, Wohlgemuth S, Herzog F, Musacchio A (2016) Insights from biochemical reconstitution into the architecture of human kinetochores. Nature 537:249

    Article  CAS  PubMed  Google Scholar 

  67. Foley EA, Kapoor TM (2013) Microtubule attachment and spindle assembly checkpoint signaling at the kinetochore. Nat Rev Mol Cell Biol 14:25–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gascoigne KE, Cheeseman IM (2011) Kinetochore assembly: if you build it, they will come. Curr Opin Cell Biol 23:102–108

    Article  CAS  PubMed  Google Scholar 

  69. Renda F, Khodjakov A (2021) Role of spatial patterns and kinetochore architecture in spindle morphogenesis. Semin Cell Dev Biol 117:75–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Musacchio A (2015) The molecular biology of spindle assembly checkpoint signaling dynamics. Curr Biol 25:R1002–R1018

    Article  CAS  PubMed  Google Scholar 

  71. Godek KM, Kabeche L, Compton DA (2015) Regulation of kinetochore-microtubule attachments through homeostatic control during mitosis. Nat Rev Mol Cell Biol 16:57–64

    Article  CAS  PubMed  Google Scholar 

  72. Klare K, Weir JR, Basilico F, Zimniak T, Massimiliano L, Ludwigs N, Herzog F, Musacchio A (2015) CENP-C is a blueprint for constitutive centromere–associated network assembly within human kinetochores. J Cell Biol 210:923–934

    Article  PubMed Central  Google Scholar 

  73. Hinshaw SM, Harrison SC (2018) Kinetochore function from the bottom up. Trends Cell Biol 28:22–33

    Article  CAS  PubMed  Google Scholar 

  74. Vicente JJ, Wordeman L (2015) Mitosis, microtubule dynamics and the evolution of kinesins. Exp Cell Res 334:61–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen Y, Hancock WO (2015) Kinesin-5 is a microtubule polymerase. Nat Commun 6:8160

    Article  CAS  PubMed  Google Scholar 

  76. Krenn V, Musacchio A (2015) The aurora B kinase in chromosome Bi-orientation and spindle checkpoint signaling. Front Oncol 5:225

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ji Z, Gao H, Yu H (2015) Kinetochore attachment sensed by competitive Mps1 and microtubule binding to Ndc80C. Science (New York N Y) 348:1260

    Article  CAS  Google Scholar 

  78. Lara-Gonzalez P, Westhorpe FG, Taylor SS (2012) The spindle assembly checkpoint. Curr Biol 22:R966–980

    Article  CAS  PubMed  Google Scholar 

  79. Etemad B, Kops GJ (2016) Attachment issues: kinetochore transformations and spindle checkpoint silencing. Curr Opin Cell Biol 39:101–108

    Article  CAS  PubMed  Google Scholar 

  80. Park I, Lee H-o, Choi E, Lee Y-K, Kwon M-S, Min J, Park P-G, Lee S, Kong Y-Y, Gong G, Lee H (2013) Loss of BubR1 acetylation causes defects in spindle assembly checkpoint signaling and promotes tumor formation. J Cell Biol 202:295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fujimitsu K, Grimaldi M, Yamano H (2016) Cyclin-dependent kinase 1–dependent activation of APC/C ubiquitin ligase. Science (New York N Y) 352:1121

    Article  CAS  Google Scholar 

  82. Kataria M, Yamano H (2019) Interplay between phosphatases and the anaphase-promoting complex/cyclosome in mitosis. Cells 8

  83. Cheng J-M, Liu Y-X (2017) Age-related loss of cohesion: causes and effects. Int J Mol Sci 18

  84. London N, Biggins S (2014) Signalling dynamics in the spindle checkpoint response. Nat Rev Mol Cell Biol 15:736–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Proudfoot KG, Anderson SJ, Dave S, Bunning AR, Roy S, Bera P, Gupta ML Jr (2019) Checkpoint proteins Bub1 and Bub3 delay anaphase onset in response to low tension independent of microtubule-kinetochore detachment. Cell Rep 27:416-428e414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bonner MK, Haase J, Swinderman J, Halas H, Miller Jenkins LM, Kelly AE (2019) Enrichment of Aurora B kinase at the inner kinetochore controls outer kinetochore assembly. J Cell Biol 218:3237–3257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cheeseman IM, Desai A (2008) Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol 9:33–46

    Article  CAS  PubMed  Google Scholar 

  88. Bielski CM, Taylor BS (2021) Homing in on genomic instability as a therapeutic target in cancer. Nat Commun 12:3663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhu LJ, Pan Y, Chen XY, Hou PF (2020) BUB1 promotes proliferation of liver cancer cells by activating SMAD2 phosphorylation. Oncol Lett 19:3506–3512

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kambiz Varmira.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest.

Research involving human and animal participants

The authors declare that the paper did not involve human/animal research.

Informed consent

This paper does not require informed consent.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamasbi, E., Hamelian, M., Hossain, M.A. et al. The cell cycle, cancer development and therapy. Mol Biol Rep 49, 10875–10883 (2022). https://doi.org/10.1007/s11033-022-07788-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07788-1

Keywords

Navigation