Skip to main content
Log in

Cellular localization of human p53 expressed in the yeast Saccharomyces cerevisiae: effect of NLSI deletion

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The tumor suppressor p53 plays a central role in the regulation of cellular growth and apoptosis. In Saccharomyces cerevisiae, over-expression of the human wtp53 leads to growth inhibition and cell death on minimal medium. In the present work, we showed that deletion of the nuclear localization signal (NLSI) of p53 restores the yeast growth. In this heterologous context, the level of p53∆NLSI was low and the protein mainly located in the cytoplasm while the wtp53 was observed in both the cytoplasmic and nuclear compartments. Interestingly, the wtp53 protein was observed in the mitochondria, whereas the p53∆NLSI protein failed to localize in mitochondria. Moreover, mitochondrial morphology defect and release of cytochrome c in the cytosol were noticed only in the yeast strain expressing the wtp53. In conclusion, our results provide evidence that the human wtp53 is active in S. cerevisiae probably through dependent and independent transcriptional mechanisms leading to cell death. The deletion of the NLSI sequence decreases p53 nuclear translocation as well as its mitochondrial localization and consequently its effect on yeast growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Oren M (2003) Decision making by p53: life, death and cancer. Cell Death Differ 10:431–442. doi:10.1038/sj.cdd.4401183

    Article  PubMed  CAS  Google Scholar 

  2. Greenblatt MS, Bennett WP, Hollstein M, Harris CC (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54:4855–4878

    PubMed  CAS  Google Scholar 

  3. Lane D (1998) Awakening angels. Nature 394:616–617

    Article  PubMed  CAS  Google Scholar 

  4. Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W (2003) Mono-versus poly ubiquitination: differential control of p53 fate by Mdm2. Science 302:1972–1975. doi:10.1126/science.1091362

    Article  PubMed  CAS  Google Scholar 

  5. Inoue T, Wu L, Stuart J, Maki CG (2005) Control of p53 nuclear accumulation in stressed cells. FEBS Lett 579:4978–4984. doi:10.1016/j.febslet.2005.08.006

    Article  PubMed  CAS  Google Scholar 

  6. Knippschild U, Oren M, Deppert W (1996) Abrogation of wild-type p53 mediated growth-inhibition by nuclear exclusion. Oncogene 12:1755–1765

    PubMed  CAS  Google Scholar 

  7. Moll UM, Ostermeyer AG, Haladay R, Winkfield B, Frazier M, Zambetti G (1996) Cytoplasmic sequestration of wild-type p53 protein impairs the G1 checkpoint after DNA damage. Mol Cell Biol 16:1126–1137

    PubMed  CAS  Google Scholar 

  8. Ryan JJ, Prochownik E, Gottlieb CA, Apel IJ, Merino R, Nunez G, Clarke MF (1994) c-myc and bcl-2 modulate p53 function by altering p53 subcellular trafficking during the cell cycle. Proc Natl Acad Sci 91:5878–5882

    Article  PubMed  CAS  Google Scholar 

  9. Becker K, Marchenko ND, Maurice M, Moll UM (2007) Hyperubiquitylation of wild-type p53 contributes to cytoplasmic sequestration in neuroblastoma. Cell Death Differ 14:1350–1360. doi:10.1038/sj.cdd.4402166

    Article  PubMed  CAS  Google Scholar 

  10. Liang SH, Clarke MF (1999) A bipartite nuclear localization signal is required for p53 nuclear import regulated by a carboxyl-terminal domain. J Biol Chem 274:32699–32703. doi:10.1074/jbc.274.46.32699

    Article  PubMed  CAS  Google Scholar 

  11. Shaulsky G, Goldfinger N, Ben-Zeev A, Rotter V (1990) Nuclear accumulation of p53 protein is mediated by several nuclear localization signals and plays a role in tumorigenesis. Mol Cell Biol 10:6565–6577

    PubMed  CAS  Google Scholar 

  12. Gorlich D, Mattaj IW (1996) Nucleocytoplasmic transport. Science 271:1513–1518

    Article  PubMed  CAS  Google Scholar 

  13. Weis K (1998) Importins and exportins: how to get in and out of the nucleus. Trends Biochem Sci 23:185–189. doi:10.1016/S0968-0004(98)01204-3

    Article  PubMed  CAS  Google Scholar 

  14. Liang SH, Clarke MF (2001) Regulation of p53 localization. Eur J Biochem 268:2779–2783

    Article  PubMed  CAS  Google Scholar 

  15. Moll UM, Wolff S, Speidel D, Deppert W (2005) Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 17:631–636

    Article  PubMed  CAS  Google Scholar 

  16. Murphy ME, Leu JI, George DL (2004) p53 moves to mitochondria: a turn on the path of apoptosis. Cell Cycle 3:836–839

    Article  PubMed  CAS  Google Scholar 

  17. Marchenko ND, Zaika A, Moll UM (2000) Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem 275:16202–16212

    Article  PubMed  CAS  Google Scholar 

  18. Holley AK, StClair DK (2009) Watching the watcher: regulation of p53 by mitochondria. Future Oncol 5:117–130. doi:10.2217/14796694.5.1.117

    Article  PubMed  CAS  Google Scholar 

  19. Ferecatu I, Bergeaud M, Rodríguez-Enfedaque A, Le Floch N, Oliver L, Rincheval V, Renaud F, Vallette FM, Mignotte B, Vayssière JL (2009) Mitochondrial localization of the low level p53 protein in proliferative cells. Biochem Biophys Res Comm 387:772–777. doi:10.1186/1471-2121-10-50

    Article  PubMed  CAS  Google Scholar 

  20. Mokdad-Gargouri R, Belhadj K, Gargouri A (2001) Translational control of human p53 expression in yeast mediated by 5′-UTR-ORF structural interaction. Nucleic Acids Res 29:1222–1227. doi:10.1093/nar/29.5.1222

    Article  PubMed  CAS  Google Scholar 

  21. Yacoubi-Hadj Amor I, Smaoui K, Chaabene I, Mabrouk I, Djemal L, Elleuch H, Allouche M, Mokdad-Gargouri R, Gargouri A (2008) Human p53 induces cell death and down regulates thioredoxin expression in Saccharomyces cerevisiae. FEMS Yeast Res 8:1–9. doi:10.1111/j.1567-1364.2008.00445

    Article  Google Scholar 

  22. Dujardin G, Pajot P, Groudinsky O, Slonimski PP (1980) Long range control circuits within mitochondria and between the nucleus and mitochondria. I. Methodology and phenomenology of suppressors. Mol Gen Genet 179:469–482

    Article  PubMed  CAS  Google Scholar 

  23. Cullin C, Pompon D (1988) Synthesis of functional mouse cytochromes P-450 P1 and chimeric P-450 P3–1 in the yeast Saccharomyces cerevisiae. Gene 65:203–217

    Article  PubMed  CAS  Google Scholar 

  24. Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    PubMed  CAS  Google Scholar 

  25. Rowley N, Prip-Buus C, Westermann B, Brown C, Schwarz E, Barrell B, Neupert W (1994) Mdj1p, a novel chaperone of the DnaJ family, is involved in mitochondrial biogenesis and protein folding. Cell 77:249–259

    Article  PubMed  CAS  Google Scholar 

  26. Westermann B, Neupert W (2000) Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast 16:1421–1427

    Article  PubMed  CAS  Google Scholar 

  27. Yacoubi-Hadj Amor I, Smaoui K, Belguith H, Djemal L, Dardouri M, Mokdad-Gargouri R, Gargouri A (2009) Selection of cell death-deficient p53 mutants in Saccharomyces cerevisiae. Yeast 26:441–450

    Article  PubMed  CAS  Google Scholar 

  28. Marchenko ND, Hanel W, Li D, Becker K, Reich N, Moll UM (2010) Stress-mediated nuclear stabilization of p53 is regulated by ubiquitination and importin-α3 binding. Cell Death Differ 17:255–267

    Article  PubMed  CAS  Google Scholar 

  29. Scharer E, Iggo R (1992) Mammalian p53 can function as transcription factor in yeast. Nucleic Acids Res 20:1539–1545

    Article  PubMed  CAS  Google Scholar 

  30. Flaman JM, Frebourg T, Moreau V, Charbonnier F, Martin C, Chappuis P, Sappino AP, Limacher JM, Bron L, Benhattar J, Tada M, Van Meir EG, Estreicher U, Iggo R (1995) A simple p53 functional assay for screening cell lines, blood, and tumors. Proc Natl Acad Sci 92:3963–3967

    Article  PubMed  CAS  Google Scholar 

  31. Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R, Ishioka C (2003) Understanding the function–structure and function–mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci 100:8424–8429. doi:10.1073pnas.1431692100

    Article  PubMed  CAS  Google Scholar 

  32. Zhao W, He C, Rotter V, Merrick BA, Selkirk JK (1999) An intragenic deletion of nuclear localization signal-1 of p53 tumor suppressor gene results in loss of apoptosis in murine fibroblasts. Cancer Lett 147(1–2):101–108

    Article  PubMed  CAS  Google Scholar 

  33. Kruse JP, Wei G (2009) Modes of p53 regulation. Cell 137:611–622. doi:10.1016/j.cell.2009.04.050

    Article  Google Scholar 

  34. Muller-Tiemenn BF, Halazonetis TD, Elting JJ (1998) Identification of an additional negative regulatory region for p53 sequence-specific DNA binding. Proc Natl Acad Sci 95:6079–6084

    Article  Google Scholar 

  35. Weinberg RL, Veprintsev DB, Fersht AR (2004) Cooperative binding of tetrameric p53 to DNA. J Mol Biol 341:1145–1159. doi:10.1016/j.jmb.2004.06.071

    Article  PubMed  CAS  Google Scholar 

  36. McLure KG, Lee PW (1998) How p53 binds DNA as tetramer. EMBO J 17:3342–3350

    Article  PubMed  CAS  Google Scholar 

  37. LaFevre-Bernt M, Wu S, Lin X (2008) Recombinant refolded tetrameric p53 and gonadotropin releasing hormone-p53 slow proliferation and induce apoptosis in p53-deficient cancer cells. Mol Cancer Ther 7(6):1420–1429. doi:10.1158/1535-7163.MCT-08-007834

    Article  PubMed  CAS  Google Scholar 

  38. Moll UM, Moll UM (2009) The mitochondrial p53 pathway. Biochim Biophys Acta 1787:1–13. doi:10.1016/j.bbabio.2008.10.005->

    Article  Google Scholar 

  39. Speidel D (2010) Transcription-independent p53 apoptosis: an alternative route to death. Trends Cell Biol 20(1):14–24. doi:10.1016/j.tcb.2009.10.002

    Article  PubMed  CAS  Google Scholar 

  40. Marchenko ND, Wolff S, Erster S, Becker K, Moll UM (2007) Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J 26:923–934. doi:10.1038/sj.emboj.7601560

    Article  PubMed  CAS  Google Scholar 

  41. Ahn BY, Dln Trinh, Zajchowskil D, Lee B, Elwia N, Kims W (2010) Tid1 is a new regulator of p53 mitochondrial translocation and apoptosis in cancer. Oncogene 29:1155–1166

    Article  PubMed  CAS  Google Scholar 

  42. Cheng W, Leach KM, Hardwick JM (2008) Mitochondrial death pathways in yeast and mammalian cells. Biochim Biophys Acta 1783:1272–1279

    Article  PubMed  CAS  Google Scholar 

  43. Eisenberg T, Buttner S, Kroemer G, Madeo F (2007) The mitochondrial pathway in yeast apoptosis. Apoptosis 12:1011–1023. doi:10.1007/s10495-007-0758-0

    Article  PubMed  CAS  Google Scholar 

  44. Priault M, Chaudhuri B, Clow A, Camougrand N, Manon S (1999) Investigation of bax-induced release of cytochrome c from yeast mitochondria, permeability of mitochondrial membranes, role of VDAC and ATP requirement. Eur J Biochem 260:684–691

    Article  PubMed  CAS  Google Scholar 

  45. Ludovico P, Rodrigues F, Almeida A, Silva MT, Barrientos A, Corte-Real M (2002) Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Mol Biol Cell 13:2598–2606

    Article  PubMed  CAS  Google Scholar 

  46. Lisa-Santamaría P, Neiman AM, Cuesta-Marbán A, Mollinedo F, Revuelta JL, Jiménez A (2009) Human initiator caspases trigger apoptotic and autophagic phenotypes in Saccharomyces cerevisiae. Biochim Biophys Acta 1793:561–571. doi:10.1016/j.bbamcr.2008.12.016

    Article  PubMed  Google Scholar 

  47. Madeo F, Fröhlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Fröhlich KU (1999) Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145:757–767.47

    Article  PubMed  CAS  Google Scholar 

  48. Tanaka T, Hijioka H, Fujita KI, Usuki Y, Taniguchi M, Hirasawa E (2004) Oxidative stress-dependent inhibition of yeast cell growth by farnesylamine and its possible relation to amine oxidase in the mitochondrial fraction. J Biosci Bioeng 98:470–476

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Mosbeh Dardouri and Yosra Kamoun are thanked for their help in rho- construction. This work was supported by a grant of the Ministère de l’Enseignement Supérieur et de la Recherche Scientifique Tunisien.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raja Mokdad-Gargouri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdelmoula-Souissi, S., Delahodde, A., Bolotin-Fukuhara, M. et al. Cellular localization of human p53 expressed in the yeast Saccharomyces cerevisiae: effect of NLSI deletion. Apoptosis 16, 746–756 (2011). https://doi.org/10.1007/s10495-011-0607-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0607-z

Keywords

Navigation