Skip to main content

Colony PCR

  • Protocol
  • First Online:
PCR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1620))

Abstract

Escherichia coli and Saccharomyces cerevisiae are currently the two most important organisms in synthetic biology. E.coli is almost always used for fundamental DNA manipulation while yeast is the simplest host system for studying eukaryotic gene expression and performing large scale DNA assembly. Yeast expression studies may also require altering of the chromosomal DNA by homologous recombination. All these studies require the verification of the expected DNA sequence and the fastest method of screening is colony PCR, which is direct PCR of DNA in cells without prior DNA purification. Colony PCR is hampered by the difficulty of releasing DNA into the PCR mix and the presence of PCR inhibitors. We hereby present one protocol for E. coli and two protocols for S. cerevisiae differing in efficiency and complexity as well as an overview of past and possible future developments of efficient S. cerevisiae colony PCR protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Güssow D, Clackson T (1989) Direct clone characterization from plaques and colonies by the polymerase chain reaction. Nucleic Acids Res 17:4000

    Article  Google Scholar 

  2. Gibson DG, Benders GA, Axelrod KC, Zaveri J, Algire MA, Moodie M, Montague MG, Venter JC, Smith HO, Hutchison CA (2008) One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic mycoplasma genitalium genome. Proc Natl Acad Sci U S A 105:20404–20409

    Article  CAS  Google Scholar 

  3. Pereira F, Azevedo F, Parachin NS, Hahn-Hägerdal B, Gorwa-Grauslund MF, Johansson B (2016) Yeast pathway kit: a method for metabolic pathway assembly with automatically simulated executable documentation. ACS Synth Biol 5:386–394

    Article  CAS  Google Scholar 

  4. Flávio Azevedo Humberto Pereira (2016) Online yeast colony PCR protocols. In: Public Github Gist. https://gist.github.com/BjornFJohansson/490ca933976d286cbaef37a07df486b8. Accessed 1 Jul 2016

  5. Sathe GM, O’Brien S, McLaughlin MM, Watson F, Livi GP (1991) Use of polymerase chain reaction for rapid detection of gene insertions in whole yeast cells. Nucleic Acids Res 19:4775

    Article  CAS  Google Scholar 

  6. Ling M, Merante F, Robinson BH (1995) A rapid and reliable DNA preparation method for screening a large number of yeast clones by polymerase chain reaction. Nucleic Acids Res 23:4924–4925

    Article  CAS  Google Scholar 

  7. Wang H, Kohalmi SE, Cutler AJ (1996) An improved method for polymerase chain reaction using whole yeast cells. Anal Biochem 237:145–146

    Article  CAS  Google Scholar 

  8. Bourke MT, Scherczinger CA, Ladd C, Lee HC (1999) NaOH treatment to neutralize inhibitors of Taq polymerase. J Forensic Sci 44:1046–1050

    Article  CAS  Google Scholar 

  9. Akada R, Murakane T, Nishizawa Y (2000) DNA extraction method for screening yeast clones by PCR. BioTechniques 28:668–670. 672, 674

    CAS  Google Scholar 

  10. Linke B, Schröder K, Arter J, Gasperazzo T, Woehlecke H, Ehwald R (2010) Extraction of nucleic acids from yeast cells and plant tissues using ethanol as medium for sample preservation and cell disruption. BioTechniques 49:655–657

    Article  CAS  Google Scholar 

  11. Lõoke M, Kristjuhan K, Kristjuhan A (2011) Extraction of genomic DNA from yeasts for PCR-based applications. BioTechniques 50:325–328

    Google Scholar 

  12. Rossen L, Nørskov P, Holmstrøm K, Rasmussen OF (1992) Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solutions. Int J Food Microbiol 17:37–45

    Article  CAS  Google Scholar 

  13. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34

    Article  CAS  Google Scholar 

  14. Pham TA, Kawai S, Murata K (2011) Visualization of the synergistic effect of lithium acetate and single-stranded carrier DNA on Saccharomyces cerevisiae transformation. Curr Genet 57:233–239

    Article  CAS  Google Scholar 

  15. Harju S, Fedosyuk H, Peterson KR (2004) Rapid isolation of yeast genomic DNA: bust n’ grab. BMC Biotechnol 4:8

    Article  Google Scholar 

  16. Blount BA, Driessen MRM, Ellis T (2016) GC Preps: fast and easy extraction of stable yeast genomic DNA. Sci Rep 6:26863

    Article  CAS  Google Scholar 

  17. Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10:506–513

    CAS  Google Scholar 

  18. Kermekchiev MB, Kirilova LI, Vail EE, Barnes WM (2009) Mutants of Taq DNA polymerase resistant to PCR inhibitors allow DNA amplification from whole blood and crude soil samples. Nucleic Acids Res 37:e40

    Article  Google Scholar 

  19. Wang Y, Prosen DE, Mei L, Sullivan JC, Finney M, Vander Horn PB (2004) A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro. Nucleic Acids Res 32:1197–1207

    Article  CAS  Google Scholar 

  20. Ghadessy FJ, Ong JL, Holliger P (2001) Directed evolution of polymerase function by compartmentalized self-replication. Proc Natl Acad Sci U S A 98:4552–4557

    Article  CAS  Google Scholar 

  21. Baar C, d’Abbadie M, Vaisman A, Arana ME, Hofreiter M, Woodgate R, Kunkel TA, Holliger P (2011) Molecular breeding of polymerases for resistance to environmental inhibitors. Nucleic Acids Res 39:e51

    Article  CAS  Google Scholar 

  22. Winship PR (1989) An improved method for directly sequencing PCR amplified material using dimethyl sulphoxide. Nucleic Acids Res 17:1266

    Article  CAS  Google Scholar 

  23. Varadaraj K, Skinner DM (1994) Denaturants or cosolvents improve the specificity of PCR amplification of a G + C-rich DNA using genetically engineered DNA polymerases. Gene 140:1–5

    Article  CAS  Google Scholar 

  24. Henke W, Herdel K, Jung K, Schnorr D, Loening SA (1997) Betaine improves the PCR amplification of GC-rich DNA sequences. Nucleic Acids Res 25:3957–3958

    Article  CAS  Google Scholar 

  25. Hengen PN (1997) Optimizing multiplex and LA-PCR with betaine. Trends Biochem Sci 22:225–226

    Article  CAS  Google Scholar 

  26. Mytelka DS, Chamberlin MJ (1996) Analysis and suppression of DNA polymerase pauses associated with a trinucleotide consensus. Nucleic Acids Res 24:2774–2781

    Article  CAS  Google Scholar 

  27. Frackman S, Kobs G, Simpson D, Storts D et al (1998) Betaine and DMSO: enhancing agents for PCR. Promega Notes 65:27–29

    Google Scholar 

  28. Kang J, Lee MS, Gorenstein DG (2005) The enhancement of PCR amplification of a random sequence DNA library by DMSO and betaine: application to in vitro combinatorial selection of aptamers. J Biochem Biophys Methods 64:147–151

    Article  CAS  Google Scholar 

  29. Hardjasa A, Ling M, Ma K, Yu H (2010) Investigating the effects of DMSO on PCR fidelity using a restriction digest-based method. J Exp Microbiol Immunol 14:161–164

    Google Scholar 

  30. Rees WA, Yager TD, Korte J, von Hippel PH (1993) Betaine can eliminate the base pair composition dependence of DNA melting. Biochemistry 32:137–144

    Article  CAS  Google Scholar 

  31. Spiess A-N, Mueller N, Ivell R (2004) Trehalose is a potent PCR enhancer: lowering of DNA melting temperature and thermal stabilization of taq polymerase by the disaccharide trehalose. Clin Chem 50:1256–1259

    Article  CAS  Google Scholar 

  32. Desai UJ, Pfaffle PK (1995) Single-step purification of a thermostable DNA polymerase expressed in Escherichia coli. BioTechniques 19(780–782):784

    Google Scholar 

  33. Bachmann B, Lüke W, Hunsmann G (1990) Improvement of PCR amplified DNA sequencing with the aid of detergents. Nucleic Acids Res 18:1309

    Article  CAS  Google Scholar 

  34. Wilson IG (1997) Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 63:3741–3751

    CAS  Google Scholar 

  35. Li H, Huang J, Lv J, An H, Zhang X, Zhang Z, Fan C, Hu J (2005) Nanoparticle PCR: nanogold-assisted PCR with enhanced specificity. Angew Chem Int Ed 44:5100–5103

    Article  CAS  Google Scholar 

  36. Yang W, Li X, Sun J, Shao Z (2013) Enhanced PCR amplification of GC-rich DNA templates by gold nanoparticles. ACS Appl Mater Interfaces 5:11520–11524

    Article  CAS  Google Scholar 

  37. Khaliq RA, Sonawane PJ, Sasi BK, Sahu BS, Pradeep T, Das SK, Mahapatra NR (2010) Enhancement in the efficiency of polymerase chain reaction by TiO 2 nanoparticles: crucial role of enhanced thermal conductivity. Nanotechnology 21:255704

    Article  Google Scholar 

  38. Jia J, Sun L, Hu N, Huang G, Weng J (2012) Graphene enhances the specificity of the polymerase chain reaction. Small 8:2011–2015

    Article  CAS  Google Scholar 

  39. Musso M, Bocciardi R, Parodi S, Ravazzolo R, Ceccherini I (2006) Betaine, dimethyl sulfoxide, and 7-deaza-dGTP, a powerful mixture for amplification of GC-rich DNA sequences. J Mol Diagn 8:544–550

    Article  CAS  Google Scholar 

  40. Ralser M, Querfurth R, Warnatz H-J, Lehrach H, Yaspo M-L, Krobitsch S (2006) An efficient and economic enhancer mix for PCR. Biochem Biophys Res Commun 347:747–751

    Article  CAS  Google Scholar 

  41. Zhang Z, Kermekchiev MB, Barnes WM (2010) Direct DNA amplification from crude clinical samples using a PCR enhancer cocktail and novel mutants of Taq. J Mol Diagn 12:152–161

    Article  Google Scholar 

  42. Dallas-Yang Q, Jiang G, Sladek FM (1998) Avoiding false positives in colony PCR. BioTechniques 24:580–582

    CAS  Google Scholar 

  43. Lee AB, Cooper TA (1995) Improved direct PCR screen for bacterial colonies: wooden toothpicks inhibit PCR amplification. BioTechniques 18:225–226

    CAS  Google Scholar 

  44. Colony Immunoblotting Assay for Detection of Bacterial Cell-surface or Extracellular Proteins —BIO-PROTOCOL. http://www.bio-protocol.org/e888. Accessed 26 Jul 2016

Download references

Acknowledgment

This work was supported by the strategic programme UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569) funded by national funds through the FCT I.P. and by the ERDF through the COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Johansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Azevedo, F., Pereira, H., Johansson, B. (2017). Colony PCR. In: Domingues, L. (eds) PCR. Methods in Molecular Biology, vol 1620. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7060-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7060-5_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-7059-9

  • Online ISBN: 978-1-4939-7060-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics