Skip to main content
Log in

Long range control circuits within mitochondria and between nucleus and mitochondria

I. Methodology and phenomenology of suppressors

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

To uncover the functional circuitry both within the mitochondrial genome and between the mitochondrial and the nuclear genome, we have developed a general method for selecting and characterizing genetically suppressor mutations that restore the respiratory capacity of mit - mitochondrial mutants.

Several hundreds of pseudo-wild type revertants due to a second unlinked mutation which suppresses a target mit - mutation were isolated. The suppressor mutations were found located either in the nuclear (abbreviated NAM for ‘nuclear accommodation of mitochondria’) or in the mitochondrial genome (abbreviated MIM for ‘mitochondrial-mitochondrial interaction’).

The specificity of action of various suppressors upon some 250 different mit - mutations located in several genes was tested. According to this specificity of action, suppressors were subdivided into two major classes: allele specific or gene specific suppressors. Because the cob-box mitochondrial gene has a mosaic organization, we were able to find a novel third class of extragenic suppressors specific for mit - mutations within the introns of this gene.

Four examples of suppressors showing various specificities of action illustrate our approach. (1) a nuclear gene controlling specific alleles of different mitochondrial genes; (2) a nuclear gene controlling selectively one intron of a split mitochondrial gene; (3) a mitochondrial gene controlling specific alleles of different mitochondrial genes; (4) a region in one complex mitochondrial gene which controls selectively one intron of another split mitochondrial gene.

Different mechanisms of suppression are discussed stressing the alleviation of splicing deficiencies of intron mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander NJ, Vincent RD, Perlman PS, Miller DH, Hanson DK, Mahler HR (1979) Regulatory interactions between mitochondrial genes. I. Genetic and biochemical characterization of some mutant types affecting apocytochrome b and cytochrome oxidase. J Biol Chem 254:2471–2479

    Google Scholar 

  • Bacila M, Horecker BL, Stoppani AOH (1978) Biochemistry and genetics of yeasts. Pure and applied aspects. Academic Press New-York

    Google Scholar 

  • Bandlow W, Schweyen RJ, Wolf K, Kaudewitz F (1977) Mitochondria 1977. Genetics and biogenesis of mitochondria. Berlin, De Gruyter

    Google Scholar 

  • Bertrand H, Kohout J (1977) Nuclear suppressor of the [poky] cytoplasmic mutant in Neurospora crassa. II. Mitochondrial cytochrome systems. Can J Genet Cytol 19:81–91

    Google Scholar 

  • Borst P, Grivell LA (1978) The mitochondrial genome of yeast: Cell 15:705–723

    Google Scholar 

  • Bücher T, Neupert W, Sebald W, Werner S (1976) Genetics and biogenesis of chloroplasts and mitochondria. Amsterdam, North Holland

    Google Scholar 

  • Cabral F, Solioz M, Rudin Y, Schatz G, Clavilier L, Slonimski PP (1978) Identification of the structural gene for yeast cytochrome c oxidase subunit II on mitochondrial DNA. J Biol Chem 253:297–304

    Google Scholar 

  • Carignani G, Dujardin G, Slonimski PP (1979) Petite deletion map of the mitochondrial oxi3 region in S. cerevisiae. Mol Gen Genet 167:301–308

    Google Scholar 

  • Chen SY, Ephrussi B, Hottinger H (1950) Nature génétique des mutants à deficience respiratoire de la souche B II de la levure de boulangerie. Heredity, 4:337–351

    Google Scholar 

  • Church GM, Slonimski PP, Gilbert W (1979) Pleiotropic mutations within 2 yeast mitochondrial cytochrome genes block mRNA processing. Cell 18:1209–1215

    Google Scholar 

  • Claisse ML, Spyridakis A, Wambier-Kluppel ML, Pajot P, Slonimski PP (1978) Mosaic organization and expression of the mitochondrial DNA region controlling cytochrome c reductase and oxidase II. Analysis of proteins translated from the box region. In: Bacila M (eds) Biochemistry and genetics of yeast. Academic Press, New-York, p 369

    Google Scholar 

  • Conde J, Fink G (1976) A mutant of S. cerevisiae defective for nuclear fusion. Proc Natl Acad Sci USA 73:3651–3655

    Google Scholar 

  • Coruzzi G, Tzagoloff A (1979) Assembly of the mitochondrial membrane system. DNA sequence of subunit 2 of yeast cytochrome oxidase. J Biol Chem 254:9324–9330

    Google Scholar 

  • Crick F (1979) Split genes and RNA splicing. Science 204:264–271

    Google Scholar 

  • Dujon B, Colson AM, Slonimski PP (1977) The mitochondrial genetic map of S. cerevisiae: compilation of mutations, genes, genetic and physical maps. In: Bandlow (eds) Mitochondria 1977. Walter de Gruyter, Berlin New-York, p 579–669

    Google Scholar 

  • Dujon B (1979) Mutants in a mosaic gene reveal functions for introns. Nature 282:777–778

    Google Scholar 

  • Dujon B (1980) Nucleotide sequence of the intron and flanking regions of yeast strains differing by ω and ribosomal alleles. Cell 20:185–198

    Google Scholar 

  • Fox TD (1979) Five TGA “stop” codons occur within the translated sequence of the yeast mitochondrial gene for cytochrome c oxidase subunit II. Proc Natl Acad Sci USA 76:6534–6538

    Google Scholar 

  • Gilbert W (1978) Why genes in pieces. Nature 271:501

    Google Scholar 

  • Gillham NW (1978) Organelle heredity. Raven Press, New York

    Google Scholar 

  • Gillie OJ (1970) Method for the study of nuclear and cytoplasmic variation in respiratory activity of Neurospora crassa, and the discovery of 3 new genes. J Gen Microbiol 61:379–395

    Google Scholar 

  • Gorini L, Beckwith JR (1966) Suppression. Annu Rev Microbiol 20:401–422

    Google Scholar 

  • Grivell LA, Arnberg AC, Boer PH, Borst P, Bos JL, van Bruggen EFJ, Groot GSP, Hecht NB, Hensgens LAM, van Ommen GJB, Tabak HF (1979) In: D. Cummings (eds) Extrachromosomal DNA: INC-UCLA Symposia on Molecular and Cellular Biology, vol 15. Academic Press, New York (in press)

    Google Scholar 

  • Haid A, Schweyen RJ, Bechmann H, Kaudewitz F, Solioz M, Schatz G (1979) The mitochondrial COB region in yeast codes for apocytochrome b and is mosaic. Eur J Biochem 94:451–465

    Google Scholar 

  • Halbreich A, Pajot P, Foucher M, Grandchamp C, Slonimski PP (1980) A Pathway of specific splicing steps in cytochrome b mRNA processing revealed in yeast mitochondria by mutational blocks within the introns and characterization of a circular RNA derived from a complementable intron. Cell 19:321–329

    Google Scholar 

  • Hawthorne DC, Leupold U (1974) Suppressor mutation in yeast. Curr Top Microbiol Immunol 64:1–47

    Google Scholar 

  • Helser TL, Davies JE, Dahlberg SE (1971) Change in methylation of 16S ribosomal RNA associated with mutation to kasugamycin resistance in Escherichia coli. Nature (London) New Biol 233:12–14

    Google Scholar 

  • Hensgens LAM, Grivell LA, Borst P, Bos JL (1979) Nucleotide sequence of the mitochondrial structural gene for subunit 9 of yeast ATPase complex. Proc Natl Acad Sci USA 76:1663–1667

    Google Scholar 

  • Jacq C, Lazowska J, Slonimski PP (1980) Sur un nouveau mécanisme de la régulation de l'expression génétique. CR Acad Sci Paris 290:serie D 89–92

    Google Scholar 

  • Katan MB, van Harten-Loosbroek N, Groot GSP (1976) The cytochrome bc1 complex of yeast mitochondria. Site of translation of the polypeptides in vivo. Eur J Biochem 70:409–417

    Google Scholar 

  • Kotylak Z, Slonimski PP (1976) Joint control of cytochrome A and B by a unique mitochondrial DNA region comprising four genetic loci. In: Saccone C and Kroon AM (eds) The Genetic function of mitochondrial DNA. Elsevier/North Holland Biomedical Press, Amsterdam p 143

    Google Scholar 

  • Kotylak Z, Slonimski PP (1977) Fine structure genetic map of the mitochondrial DNA region controlling coenzyme QH2-cytochrome c reductase. In: Bandlow W (eds) Mitochondria 1977. Genetics and Biognesis of mitochondria. Walter de Gruyter, Berlin, p 161

    Google Scholar 

  • Kruszewska A, Szczesniak B, Claisse ML (1980) Recombinational analysis of oxi1 mutants and preliminary analysis of their translation products in S. cerevisiae. Current Genetics (submitted)

  • Kruszewska A, Szcesniak B (1980) Construction of isomitochondrial and isonuclear strains for recombinational analysis of mitochondrial loci in S. cerevisiae. Genet Res 35:225–229

    Google Scholar 

  • Lamouroux A (1979) Thèse de Doctorat de 3ème cycle de Génétique, Paris XI.

  • Lamouroux A, Kochko A, Pajot P, Colson AM, Slonimski PP (1979) Complementation between exons and introns and the “guide” RNA model of gene expression. In: Molecular Biology of the gene EMBO Workshop Davos, Mars

  • Lazowska J, Slonimski PP (1976) Electron microscopy analysis of circular repetitive mitochondrial DNA molecules from genetically characterized rho - mutants of S. cerevisiae. Mol Gen Genet 146:61–78

    Google Scholar 

  • Mitchell MB, Mitchell HK (1956) A nuclear gene suppressor of a cytoplasmically inherited character in Neurospora crassa. J Gen Microbiol 14:84–89

    Google Scholar 

  • Pajot P, Wambier-Kluppel ML, Slonimski PP (1977) Cytochrome c reductase and cytochrome oxidase formation in mutants and revertants in the “box” region of mitochondrial DNA. In: Bandlow W (eds) Mitochondria 1977. Genetics and biogenesis of mitochondria. Walter de Gruyter, Berlin New York, p 173

    Google Scholar 

  • Rowlands RT, Turner G (1977) Nuclear-extranuclear interactions affecting oligomycin resistance in Aspergillus nidulans. Mol Gen Genet 154:311–318

    Google Scholar 

  • Saccone C, Kroon AM (1976) The genetic function of mitochondrial DNA. North Holland, Amsterdam

    Google Scholar 

  • Schatz G, Mason TL (1974) The biosynthesis of mitochondrial proteins. Annu Rev Biochem 43:51–87

    Google Scholar 

  • Schweizer E, Demmer W, Holzner U, Tahed HW (1977) Control of mitochondrial inactivation of temperature sensitive S. cerevisiae nuclear petite mutants. In: Bandlow W. (eds) Mitochondria 1977. Walter de Gruyter, Berlin New York, p 91

    Google Scholar 

  • Schweyen RJ, Steyrer U, Kaudewitz F, Dujon B, Slonimski PP (1976) Mapping of mitochondrial genes in S. cerevisae. Population and pedigree analysis of retention or loss of four genetic markers in rho - cells. Mol Gen Genet 146:117–132

    Google Scholar 

  • Sherman F, Slonimski PP (1964) Respiration deficient mutants of yeast II. Biochemistry. Biochim Biophys Acta 90:1–15

    Google Scholar 

  • Sherman F, Stewart JW, Parker JH, Inhaler E, Shipman NA, Putterman GJ, Gardinsky RL, Margoliash E (1968) The mutational alteration of the primary structure of yeast iso-1-cytochrome c. J Biol Chem 243:5446–5456

    Google Scholar 

  • Slonimski PP, Ephrussi B (1949) Action de l'acriflavine sur les levures. V. Le système des cytochromes des mutants “petite colonie”. Ann de l'Institut Pasteur 77:47–63

    Google Scholar 

  • Slonimski PP, Tzagoloff A (1976) Localization in yeast mitochondrial DNA of mutations expressed in a deficiency of cytochrome oxidase and/or coenzyme QH2-cytochrome c reductase. Eur J Biochem 61:27–41

    Google Scholar 

  • Slonimski PP, Claisse M, Foucher M, Jacq C, Kochko A, Lamouroux A, Pajot P, Perrodin G, Spyridakis A, Wambier-Kluppel ML (1978) Mosaic organization and expression of the mitochondrial DNA region controlling cytochrome c reductase and oxidase. III. A model of structure and function. In: Bacila (eds) Biochemistry and genetics of yeast. Academic Press, New York, p 391

    Google Scholar 

  • Trembath MK, Monk BC, Kellerman GM, Linnane AW (1975) Biogenesis of mitochondria. 40. Phenotypic suppression of a mitochondrial mutation by a nuclear gene in Saccharomyces cerevisiae. Mol Gen Genet 140:333–337

    Google Scholar 

  • Tzagoloff A, Akai A, Needleman RB (1975) Assembly of the mitochondrial membrane system: isolation of nuclear and cytoplasmic mutants of S. cerevisiae with specific defects in mitochondrial functions. J Bacteriol 122:826–931

    Google Scholar 

  • van Ommen GJB, Groot GSP, Grivell LA (1979) Transcription maps of mtDNAs of two strains of Saccharomyces cerevisiae. Transcription of strain-specific insertions; complex RNA maturation and splicing. Cell 18:511–523

    Google Scholar 

  • Wambier-Kluppel ML (1977) Contribution à l'étude de la biogénèse de la mitochondrie. Caractérisation physiologique et biochimique des mutants de l'ADN mitochondrial de Saccharomyces cerevisiae affectés dans la région contrôlant la coenzyme QH2 cytochrome c reductase. Thèse de Doctorat de 3ème cycle de Biochimie, Paris XI

  • Waxman MF, Knight JA, Perlman PS (1979) Suppression of mitochondrially determined resistance to chloramphenicol and paromomycin by nuclear genes in Saccharomyces cerevisiae. Mol Gen Genet 167:243–250

    Google Scholar 

  • Wright RE, Lederberg J (1975) Extranuclear transmission in yeast heterokaryons. Proc Natl Acad Sci USA 43:919–923

    Google Scholar 

  • Zakharov JA, Stepanova VP (1977) Le tranfert autonome des facteurs mitochondriaux (la cytoduction) lors du croisement des cellules de levure S. cerevisiae. Biochimie 59:917–949

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. Gajewski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dujardin, G., Pajot, P., Groudinsky, O. et al. Long range control circuits within mitochondria and between nucleus and mitochondria. Molec. Gen. Genet. 179, 469–482 (1980). https://doi.org/10.1007/BF00271736

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00271736

Keywords

Navigation