Skip to main content

Advertisement

Log in

Sensitization of human bladder tumor cells to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis with a small molecule IAP antagonist

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Urothelial carcinoma of the bladder accounts for approximately 5% of all cancer deaths in humans. The large majority of bladder tumors are non-muscle invasive at diagnosis, but even after local surgical therapy there is a high rate of local tumor recurrence and progression. Current treatments extend time to recurrence but do not significantly alter disease survival. The objective of the present study was to investigate the tumoricidal potential of combining the apoptosis-inducing protein TNF-related apoptosis-inducing ligand (TRAIL) with a small molecule inhibitor of apoptosis proteins (IAP) antagonist to interfere with intracellular regulators of apoptosis in human bladder tumor cells. Our results demonstrate that the IAP antagonist Compound A exhibits high binding affinity to the XIAP BIR3 domain. When Compound A was used at nontoxic concentrations in combination with TRAIL, there was a significant increase in the sensitivity of TRAIL-sensitive and TRAIL-resistant bladder tumor lines to TRAIL-mediated apoptosis. In addition, modulation of TRAIL sensitivity in the TRAIL-resistant bladder tumor cell line T24 with Compound A was reciprocated by XIAP small interfering RNA-mediated suppression of XIAP expression, suggesting the importance of XIAP-mediated resistance to TRAIL in these cells. These results suggest the potential of combining Compound A with TRAIL as an alternative therapy for bladder cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ashkenazi A, Herbst RS (2008) To kill a tumor cell: the potential of proapoptotic receptor agonists. J Clin Invest 118:1979–1990

    Article  CAS  PubMed  Google Scholar 

  2. Armitage RJ (1994) Tumor necrosis factor receptor superfamily members and their ligands. Curr Opin Immunol 6:407–413

    Article  CAS  PubMed  Google Scholar 

  3. Smith CA, Farrah T, Goodwin RG (1994) The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 76:959–962

    Article  CAS  PubMed  Google Scholar 

  4. Itoh N, Nagata S (1993) A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem 268:10932–10937

    CAS  PubMed  Google Scholar 

  5. Tartaglia LA, Ayres TM, Wong GH, Goeddel DV (1993) A novel domain within the 55 kd TNF receptor signals cell death. Cell 74:845–853

    Article  CAS  PubMed  Google Scholar 

  6. Alderson MR, Tough TW, Davis-Smith T et al (1995) Fas ligand mediates activation-induced cell death in human T lymphocytes. J Exp Med 181:71–77

    Article  CAS  PubMed  Google Scholar 

  7. Cerami A, Beutler B (1988) The role of cachectin/TNF in endotoxic shock and cachexia. Immunol Today 9:28–31

    Article  CAS  PubMed  Google Scholar 

  8. Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA (1995) Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270:1189–1192

    Article  CAS  PubMed  Google Scholar 

  9. Hahne M, Rimoldi D, Schroter M et al (1996) Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 274:1363–1366

    Article  CAS  PubMed  Google Scholar 

  10. Zheng L, Fisher G, Miller RE, Peschon J, Lynch DH, Lenardo MJ (1995) Induction of apoptosis in mature T cells by tumour necrosis factor. Nature 377:348–351

    Article  CAS  PubMed  Google Scholar 

  11. Barnhart BC, Alappat EC, Peter ME (2003) The CD95 type I/type II model. Semin Immunol 15:185–193

    Article  CAS  PubMed  Google Scholar 

  12. Gross A, Yin XM, Wang K et al (1999) Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem 274:1156–1163

    Article  CAS  PubMed  Google Scholar 

  13. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136

    Article  CAS  PubMed  Google Scholar 

  14. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  CAS  PubMed  Google Scholar 

  15. Boehm U, Klamp T, Groot M, Howard JC (1997) Cellular responses to interferon-gamma. Annu Rev Immunol 15:749–795

    Article  CAS  PubMed  Google Scholar 

  16. Beatty WL, Russell DG (2000) Identification of mycobacterial surface proteins released into subcellular compartments of infected macrophages. Infect Immun 68:6997–7002

    Article  CAS  PubMed  Google Scholar 

  17. Brandau S, Suttmann H, Riemensberger J et al (2000) Perforin-mediated lysis of tumor cells by Mycobacterium bovis Bacillus Calmette-Guerin-activated killer cells. Clin Cancer Res 6:3729–3738

    CAS  PubMed  Google Scholar 

  18. Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42

    Article  CAS  PubMed  Google Scholar 

  19. Ekert PG, Silke J, Hawkins CJ, Verhagen AM, Vaux DL (2001) DIABLO promotes apoptosis by removing MIHA/XIAP from processed caspase 9. J Cell Biol 152:483–490

    Article  CAS  PubMed  Google Scholar 

  20. Liu Z, Sun C, Olejniczak ET et al (2000) Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 408:1004–1008

    Article  CAS  PubMed  Google Scholar 

  21. Shi Y (2002) A conserved tetrapeptide motif: potentiating apoptosis through IAP-binding. Cell Death Differ 9:93–95

    Article  CAS  PubMed  Google Scholar 

  22. Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X, Shi Y (2000) Structural basis of IAP recognition by Smac/DIABLO. Nature 408:1008–1012

    Article  CAS  PubMed  Google Scholar 

  23. Bockbrader KM, Tan M, Sun Y (2005) A small molecule Smac-mimic compound induces apoptosis and sensitizes TRAIL- and etoposide-induced apoptosis in breast cancer cells. Oncogene 24:7381–7388

    Article  CAS  PubMed  Google Scholar 

  24. Fulda S, Wick W, Weller M, Debatin KM (2002) Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 8:808–815

    CAS  PubMed  Google Scholar 

  25. Li L, Thomas RM, Suzuki H, De Brabander JK, Wang X, Harran PG (2004) A small molecule Smac mimic potentiates TRAIL- and TNFalpha-mediated cell death. Science 305:1471–1474

    Article  CAS  PubMed  Google Scholar 

  26. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271:12687–12690

    Article  CAS  PubMed  Google Scholar 

  27. Wiley SR, Schooley K, Smolak PJ et al (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3:673–682

    Article  CAS  PubMed  Google Scholar 

  28. Ganten TM, Koschny R, Haas TL, Sykora J, Li-Webber M, Herzer K, Walczak H (2005) The proteasome inhibitor bortezomib (Velcade) sensitizes some human tumors to Apo2L/TRAIL-mediated apoptosis. Ann NY Acad Sci 1059:160–167

    Article  CAS  Google Scholar 

  29. Komdeur R, Meijer C, Van Zweeden M, De Jong S, Wesseling J, Hoekstra HJ, van der Graaf WT (2004) Doxorubicin potentiates TRAIL cytotoxicity and apoptosis and can overcome TRAIL-resistance in rhabdomyosarcoma cells. Int J Oncol 25:677–684

    CAS  PubMed  Google Scholar 

  30. Tsai WS, Yeow WS, Chua A, Reddy RM, Nguyen DM, Schrump DS, Nguyen DM (2006) Enhancement of Apo2L/TRAIL-mediated cytotoxicity in esophageal cancer cells by cisplatin. Mol Cancer Ther 5:2977–2990

    Article  CAS  PubMed  Google Scholar 

  31. Vince JE, Wong WW, Khan N et al (2007) IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131:682–693

    Article  CAS  PubMed  Google Scholar 

  32. Petzoldt JL, Leigh IM, Duffy PG, Sexton C, Masters JR (1995) Immortalisation of human urothelial cells. Urol Res 23:377–380

    Article  CAS  PubMed  Google Scholar 

  33. Rossi MR, Masters JR, Park S et al (2001) The immortalized UROtsa cell line as a potential cell culture model of human urothelium. Environ Health Perspect 109:801–808

    Article  CAS  PubMed  Google Scholar 

  34. Nikolovska-Coleska Z, Wang R, Fang X et al (2004) Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization. Anal Biochem 332:261–273

    Article  CAS  PubMed  Google Scholar 

  35. Waterhouse NJ, Goldstein JC, von Ahsen O, Schuler M, Newmeyer DD, Green DR (2001) Cytochrome c maintains mitochondrial transmembrane potential and ATP generation after outer mitochondrial membrane permeabilization during the apoptotic process. J Cell Biol 153:319–328

    Article  CAS  PubMed  Google Scholar 

  36. Flick DA, Gifford GE (1984) Comparison of in vitro cell cytotoxic assays for tumor necrosis factor. J Immunol Methods 68:167–175

    Article  CAS  PubMed  Google Scholar 

  37. Prichard MN, Prichard LE, Shipman C Jr (1993) Strategic design and three-dimensional analysis of antiviral drug combinations. Antimicrob Agents Chemother 37:540–545

    CAS  PubMed  Google Scholar 

  38. Earel JK Jr, VanOosten RL, Griffith TS (2006) Histone deacetylase inhibitors modulate the sensitivity of tumor necrosis factor-related apoptosis-inducing ligand-resistant bladder tumor cells. Cancer Res 66:499–507

    Article  CAS  PubMed  Google Scholar 

  39. Griffith TS, Broghammer EL (2001) Suppression of tumor growth following intralesional therapy with TRAIL recombinant adenovirus. Mol Ther 4:257–266

    Article  CAS  PubMed  Google Scholar 

  40. Varfolomeev E, Blankenship JW, Wayson SM et al (2007) IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 131:669–681

    Article  CAS  PubMed  Google Scholar 

  41. Probst BL, Liu L, Ramesh V, Li L, Sun H, Minna JD, Wang L (2010) Smac mimetics increase cancer cell response to chemotherapeutics in a TNF-α-dependent manner. Cell Death Differ. doi:10.1038/cdd.2010.44

  42. Donato NJ, Gallick GE, Steck PA, Rosenblum MG (1989) Tumor necrosis factor modulates epidermal growth factor receptor phosphorylation and kinase activity in human tumor cells. Correlation with cytotoxicity. J Biol Chem 264:20474–20481

    CAS  PubMed  Google Scholar 

  43. McStay GP, Salvesen GS, Green DR (2008) Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways. Cell Death Differ 15:322–331

    Article  CAS  PubMed  Google Scholar 

  44. Shrader M, Pino MS, Lashinger L, Bar-Eli M, Adam L, Dinney CP, McConkey DJ (2007) Gefitinib reverses TRAIL resistance in human bladder cancer cell lines via inhibition of AKT-mediated X-linked inhibitor of apoptosis protein expression. Cancer Res 67:1430–1435

    Article  CAS  PubMed  Google Scholar 

  45. White-Gilbertson SJ, Kasman L, McKillop J, Tirodkar T, Lu P, Voelkel-Johnson C (2009) Oxidative stress sensitizes bladder cancer cells to TRAIL mediated apoptosis by down-regulating anti-apoptotic proteins. J Urol 182:1178–1185

    Article  CAS  PubMed  Google Scholar 

  46. Yang D, Song X, Zhang J et al (2010) Therapeutic potential of siRNA-mediated combined knockdown of the IAP genes (Livin, XIAP, and Survivin) on human bladder cancer T24 cells. Acta Biochim Biophys Sin (Shanghai) 42:137–144

    Article  CAS  Google Scholar 

  47. Sprick MR, Weigand MA, Rieser E et al (2000) FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 12:599–609

    Article  CAS  PubMed  Google Scholar 

  48. Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ, Ashkenazi A (2000) Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12:611–620

    Article  CAS  PubMed  Google Scholar 

  49. Zimmermann KC, Bonzon C, Green DR (2001) The machinery of programmed cell death. Pharmacol Ther 92:57–70

    Article  CAS  PubMed  Google Scholar 

  50. Kuida K (2000) Caspase-9. Int J Biochem Cell Biol 32:121–124

    Article  CAS  PubMed  Google Scholar 

  51. Eckelman BP, Salvesen GS, Scott FL (2006) Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 7:988–994

    Article  CAS  PubMed  Google Scholar 

  52. Chen DJ, Huerta S (2009) Smac mimetics as new cancer therapeutics. Anticancer Drugs 20:646–658

    Article  CAS  PubMed  Google Scholar 

  53. Arnt CR, Chiorean MV, Heldebrant MP, Gores GJ, Kaufmann SH (2002) Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAP1 in situ. J Biol Chem 277:44236–44243

    Article  CAS  PubMed  Google Scholar 

  54. Guo F, Nimmanapalli R, Paranawithana S et al (2002) Ectopic overexpression of second mitochondria-derived activator of caspases (Smac/DIABLO) or cotreatment with N-terminus of Smac/DIABLO peptide potentiates epothilone B derivative-(BMS 247550) and Apo-2L/TRAIL-induced apoptosis. Blood 99:3419–3426

    Article  CAS  PubMed  Google Scholar 

  55. Mori T, Doi R, Kida A et al (2007) Effect of the XIAP inhibitor Embelin on TRAIL-induced apoptosis of pancreatic cancer cells. J Surg Res 142:281–286

    Article  CAS  PubMed  Google Scholar 

  56. Yang L, Mashima T, Sato S et al (2003) Predominant suppression of apoptosome by inhibitor of apoptosis protein in non-small cell lung cancer H460 cells: therapeutic effect of a novel polyarginine-conjugated Smac peptide. Cancer Res 63:831–837

    CAS  PubMed  Google Scholar 

  57. Yang QH, Du C (2004) Smac/DIABLO selectively reduces the levels of c-IAP1 and c-IAP2 but not that of XIAP and livin in HeLa cells. J Biol Chem 279:16963–16970

    Article  CAS  PubMed  Google Scholar 

  58. Jia L, Patwari Y, Kelsey SM, Srinivasula SM, Agrawal SG, Alnemri ES, Newland AC (2003) Role of Smac in human leukaemic cell apoptosis and proliferation. Oncogene 22:1589–1599

    Article  CAS  PubMed  Google Scholar 

  59. Checinska A, Hoogeland BS, Rodriguez JA, Giaccone G, Kruyt FA (2007) Role of XIAP in inhibiting cisplatin-induced caspase activation in non-small cell lung cancer cells: a small molecule Smac mimic sensitizes for chemotherapy-induced apoptosis by enhancing caspase-3 activation. Exp Cell Res 313:1215–1224

    Article  CAS  PubMed  Google Scholar 

  60. Cossu F, Mastrangelo E, Milani M et al (2009) Designing Smac-mimetics as antagonists of XIAP, cIAP1, and cIAP2. Biochem Biophys Res Commun 378:162–167

    Article  CAS  PubMed  Google Scholar 

  61. Cossu F, Milani M, Mastrangelo E et al (2009) Structural basis for bivalent Smac-mimetics recognition in the IAP protein family. J Mol Biol 392:630–644

    Article  CAS  PubMed  Google Scholar 

  62. Lecis D, Drago C, Manzoni L et al (2010) Novel SMAC-mimetics synergistically stimulate melanoma cell death in combination with TRAIL and Bortezomib. Br J Cancer 102:1707–1716

    Article  CAS  PubMed  Google Scholar 

  63. Oost TK, Sun C, Armstrong RC et al (2004) Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J Med Chem 47:4417–4426

    Article  CAS  PubMed  Google Scholar 

  64. Petrucci E, Pasquini L, Petronelli A et al (2007) A small molecule Smac mimic potentiates TRAIL-mediated cell death of ovarian cancer cells. Gynecol Oncol 105:481–492

    Article  CAS  PubMed  Google Scholar 

  65. Sun H, Nikolovska-Coleska Z, Lu J et al (2007) Design, synthesis, and characterization of a potent, nonpeptide, cell-permeable, bivalent Smac mimetic that concurrently targets both the BIR2 and BIR3 domains in XIAP. J Am Chem Soc 129:15279–15294

    Article  CAS  PubMed  Google Scholar 

  66. Sun H, Nikolovska-Coleska Z, Yang CY et al (2008) Design of small-molecule peptidic and nonpeptidic Smac mimetics. Acc Chem Res 41:1264–1277

    Article  CAS  PubMed  Google Scholar 

  67. Sun H, Stuckey JA, Nikolovska-Coleska Z et al (2008) Structure-based design, synthesis, evaluation, and crystallographic studies of conformationally constrained Smac mimetics as inhibitors of the X-linked inhibitor of apoptosis protein (XIAP). J Med Chem 51:7169–7180

    Article  CAS  PubMed  Google Scholar 

  68. Weisberg E, Kung AL, Wright RD et al (2007) Potentiation of antileukemic therapies by Smac mimetic, LBW242: effects on mutant FLT3-expressing cells. Mol Cancer Ther 6:1951–1961

    Article  CAS  PubMed  Google Scholar 

  69. Zhang B, Nikolovska-Coleska Z, Zhang Y et al (2008) Design, synthesis, and evaluation of tricyclic, conformationally constrained small-molecule mimetics of second mitochondria-derived activator of caspases. J Med Chem 51:7352–7355

    Article  CAS  PubMed  Google Scholar 

  70. ClinicalTrials.gov

  71. Smac mimetic compounds as apoptosis inducers. Universita’Degli Studi di Milano Fondazione IRCCS Istituto Nazionale dei Tumori 2008

  72. MacFarlane M, Harper N, Snowden RT, Dyer MJ, Barnett GA, Pringle JH, Cohen GM (2002) Mechanisms of resistance to TRAIL-induced apoptosis in primary B cell chronic lymphocytic leukaemia. Oncogene 21:6809–6818

    Article  CAS  PubMed  Google Scholar 

  73. Marsters SA, Sheridan JP, Pitti RM et al (1997) A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr Biol 7:1003–1006

    Article  CAS  PubMed  Google Scholar 

  74. Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM (1997) An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277:815–818

    Article  CAS  PubMed  Google Scholar 

  75. Pan G, Ni J, Yu G, Wei YF, Dixit VM (1998) TRUNDD, a new member of the TRAIL receptor family that antagonizes TRAIL signalling. FEBS Lett 424:41–45

    Article  CAS  PubMed  Google Scholar 

  76. Sheridan JP, Marsters SA, Pitti RM et al (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277:818–821

    Article  CAS  PubMed  Google Scholar 

  77. Sanlioglu AD, Dirice E, Aydin C, Erin N, Koksoy S, Sanlioglu S (2005) Surface TRAIL decoy receptor-4 expression is correlated with TRAIL resistance in MCF7 breast cancer cells. BMC Cancer 5:54

    Article  PubMed  CAS  Google Scholar 

  78. Sheikh MS, Huang Y, Fernandez-Salas EA et al (1999) The antiapoptotic decoy receptor TRID/TRAIL-R3 is a p53-regulated DNA damage-inducible gene that is overexpressed in primary tumors of the gastrointestinal tract. Oncogene 18:4153–4159

    Article  CAS  PubMed  Google Scholar 

  79. Aydin C, Sanlioglu AD, Karacay B et al (2007) Decoy receptor-2 small interfering RNA (siRNA) strategy employing three different siRNA constructs in combination defeats adenovirus-transferred tumor necrosis factor-related apoptosis-inducing ligand resistance in lung cancer cells. Hum Gene Ther 18:39–50

    Article  CAS  PubMed  Google Scholar 

  80. Sanlioglu AD, Karacay B, Koksal IT, Griffith TS, Sanlioglu S (2007) DcR2 (TRAIL-R4) siRNA and adenovirus delivery of TRAIL (Ad5hTRAIL) break down in vitro tumorigenic potential of prostate carcinoma cells. Cancer Gene Ther 14:976–984

    Article  CAS  PubMed  Google Scholar 

  81. Buneker C, Mohr A, Zwacka RM (2009) The TRAIL-receptor-1: TRAIL-receptor-3 and -4 ratio is a predictor for TRAIL sensitivity of cancer cells. Oncol Rep 21:1289–1295

    CAS  PubMed  Google Scholar 

  82. Zhang XD, Franco A, Myers K, Gray C, Nguyen T, Hersey P (1999) Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE-inhibitory protein expression to TRAIL-induced apoptosis of melanoma. Cancer Res 59:2747–2753

    CAS  PubMed  Google Scholar 

  83. Wagner KW, Punnoose EA, Januario T et al (2007) Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat Med 13:1070–1077

    Article  CAS  PubMed  Google Scholar 

  84. Fulda S, Meyer E, Debatin KM (2002) Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene 21:2283–2294

    Article  CAS  PubMed  Google Scholar 

  85. Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ (1998) Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol 161:2833–2840

    CAS  PubMed  Google Scholar 

  86. Griffith TS, Fialkov JM, Scott DL et al (2002) Induction and regulation of tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand-mediated apoptosis in renal cell carcinoma. Cancer Res 62:3093–3099

    CAS  PubMed  Google Scholar 

  87. Kim YH, Lee DH, Jeong JH, Guo ZS, Lee YJ (2008) Quercetin augments TRAIL-induced apoptotic death: involvement of the ERK signal transduction pathway. Biochem Pharmacol 75:1946–1958

    Article  CAS  PubMed  Google Scholar 

  88. Lee TJ, Lee JT, Park JW, Kwon TK (2006) Acquired TRAIL resistance in human breast cancer cells are caused by the sustained cFLIP(L) and XIAP protein levels and ERK activation. Biochem Biophys Res Commun 351:1024–1030

    Article  CAS  PubMed  Google Scholar 

  89. Nesterov A, Lu X, Johnson M, Miller GJ, Ivashchenko Y, Kraft AS (2001) Elevated AKT activity protects the prostate cancer cell line LNCaP from TRAIL-induced apoptosis. J Biol Chem 276:10767–10774

    Article  CAS  PubMed  Google Scholar 

  90. Vaculova A, Hofmanova J, Soucek K, Kozubik A (2006) Different modulation of TRAIL-induced apoptosis by inhibition of pro-survival pathways in TRAIL-sensitive and TRAIL-resistant colon cancer cells. FEBS Lett 580:6565–6569

    Article  CAS  PubMed  Google Scholar 

  91. Ng CP, Bonavida B (2002) X-linked inhibitor of apoptosis (XIAP) blocks Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis of prostate cancer cells in the presence of mitochondrial activation: sensitization by overexpression of second mitochondria-derived activator of caspase/direct IAP-binding protein with low pl (Smac/DIABLO). Mol Cancer Ther 1:1051–1058

    CAS  PubMed  Google Scholar 

  92. Shiiki K, Yoshikawa H, Kinoshita H, Takeda M, Ueno A, Nakajima Y, Tasaka K (2000) Potential mechanisms of resistance to TRAIL/Apo2L-induced apoptosis in human promyelocytic leukemia HL-60 cells during granulocytic differentiation. Cell Death Differ 7:939–946

    Article  CAS  PubMed  Google Scholar 

  93. Irmler M, Thome M, Hahne M et al (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388:190–195

    Article  CAS  PubMed  Google Scholar 

  94. Geserick P, Drewniok C, Hupe M et al (2008) Suppression of cFLIP is sufficient to sensitize human melanoma cells to TRAIL- and CD95L-mediated apoptosis. Oncogene 27:3211–3220

    Article  CAS  PubMed  Google Scholar 

  95. Siegmund D, Hadwiger P, Pfizenmaier K, Vornlocher HP, Wajant H (2002) Selective inhibition of FLICE-like inhibitory protein expression with small interfering RNA oligonucleotides is sufficient to sensitize tumor cells for TRAIL-induced apoptosis. Mol Med 8:725–732

    CAS  PubMed  Google Scholar 

  96. Deveraux QL, Takahashi R, Salvesen GS, Reed JC (1997) X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388:300–304

    Article  CAS  PubMed  Google Scholar 

  97. Schimmer AD, Welsh K, Pinilla C et al (2004) Small-molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity. Cancer Cell 5:25–35

    Article  CAS  PubMed  Google Scholar 

  98. Hinz S, Trauzold A, Boenicke L et al (2000) Bcl-XL protects pancreatic adenocarcinoma cells against CD95- and TRAIL-receptor-mediated apoptosis. Oncogene 19:5477–5486

    Article  CAS  PubMed  Google Scholar 

  99. Sinicrope FA, Penington RC, Tang XM (2004) Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis is inhibited by Bcl-2 but restored by the small molecule Bcl-2 inhibitor, HA 14-1, in human colon cancer cells. Clin Cancer Res 10:8284–8292

    Article  CAS  PubMed  Google Scholar 

  100. Clohessy JG, Zhuang J, de Boer J, Gil-Gomez G, Brady HJ (2006) Mcl-1 interacts with truncated Bid and inhibits its induction of cytochrome c release and its role in receptor-mediated apoptosis. J Biol Chem 281:5750–5759

    Article  CAS  PubMed  Google Scholar 

  101. Ndozangue-Touriguine O, Sebbagh M, Merino D, Micheau O, Bertoglio J, Breard J (2008) A mitochondrial block and expression of XIAP lead to resistance to TRAIL-induced apoptosis during progression to metastasis of a colon carcinoma. Oncogene 27:6012–6022

    Article  CAS  PubMed  Google Scholar 

  102. Morales A, Johnston B, Emerson L, Heaton JW (1997) Intralesional administration of biological response modifiers in the treatment of localized cancer of the prostate: a feasibility study. Urology 50:495–502

    Article  CAS  PubMed  Google Scholar 

  103. Bohle A, Gerdes J, Ulmer AJ, Hofstetter AG, Flad HD (1990) Effects of local bacillus Calmette-Guerin therapy in patients with bladder carcinoma on immunocompetent cells of the bladder wall. J Urol 144:53–58

    CAS  PubMed  Google Scholar 

  104. Thanhauser A, Bohle A, Flad HD, Ernst M, Mattern T, Ulmer AJ (1993) Induction of bacillus-Calmette-Guerin-activated killer cells from human peripheral blood mononuclear cells against human bladder carcinoma cell lines in vitro. Cancer Immunol Immunother 37:105–111

    Article  CAS  PubMed  Google Scholar 

  105. Bohle A, Nowc C, Ulmer AJ, Musehold J, Gerdes J, Hofstetter AG, Flad HD (1990) Elevations of cytokines interleukin-1, interleukin-2 and tumor necrosis factor in the urine of patients after intravesical bacillus Calmette-Guerin immunotherapy. J Urol 144:59–64

    CAS  PubMed  Google Scholar 

  106. de Reijke TM, de Boer EC, Kurth KH, Schamhart DH (1996) Urinary cytokines during intravesical bacillus Calmette-Guerin therapy for superficial bladder cancer: processing, stability and prognostic value. J Urol 155:477–482

    Article  PubMed  Google Scholar 

  107. Jackson AM, Alexandroff AB, Kelly RW et al (1995) Changes in urinary cytokines and soluble intercellular adhesion molecule-1 (ICAM-1) in bladder cancer patients after bacillus Calmette-Guerin (BCG) immunotherapy. Clin Exp Immunol 99:369–375

    Article  CAS  PubMed  Google Scholar 

  108. Ludwig AT, Moore JM, Luo Y, Chen X, Saltsgaver NA, O’Donnell MA, Griffith TS (2004) Tumor necrosis factor-related apoptosis-inducing ligand: a novel mechanism for Bacillus Calmette-Guerin-induced antitumor activity. Cancer Res 64:3386–3390

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from TetraLogic Pharmaceuticals and the National Institutes of Health (CA109446; TSG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas S. Griffith.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffith, T.S., Kucaba, T.A., O’Donnell, M.A. et al. Sensitization of human bladder tumor cells to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis with a small molecule IAP antagonist. Apoptosis 16, 13–26 (2011). https://doi.org/10.1007/s10495-010-0535-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0535-3

Keywords

Navigation