Skip to main content

Advertisement

Log in

Insulin increases H2O2-induced pancreatic beta cell death

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Insulin resistance results, in part, from impaired insulin signaling in insulin target tissues. Consequently, increased levels of insulin are necessary to control plasma glucose levels. The effects of elevated insulin levels on pancreatic beta (β) cell function, however, are unclear. In this study, we investigated the possibility that insulin may influence survival of pancreatic β cells. Studies were conducted on RINm, RINm5F and Min-6 pancreatic β-cells. Cell death was induced by treatment with H2O2, and was estimated by measurements of LDH levels, viability assay (Cell-Titer Blue), propidium iodide staining and FACS analysis, and mitochondrial membrane potential (JC-1). In addition, levels of cleaved caspase-3 and caspase activity were determined. Treatment with H2O2 increased cell death; this effect was increased by simultaneous treatment of cells with insulin. Insulin treatment alone caused a slight increase in cell death. Inhibition of caspase-3 reduced the effect of insulin to increase H2O2-induced cell death. Insulin increased ROS production by pancreatic β cells and increased the effect of H2O2. These effects were increased by inhibition of IR signaling, indicative of an effect independent of the IR cascade. We conclude that elevated levels of insulin may act to exacerbate cell death induced by H2O2 and, perhaps, other inducers of apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

T1DM:

Type 1 diabetes mellitus

T2DM:

Type 2 diabetes mellitus

References

  1. Nakamura U, Iwase M, Uchizono Y, Sonoki K, Sasaki N, Imoto H, Goto D, Iida M (2006) Rapid intracellular acidification and cell death by H2O2 and alloxan in pancreatic beta cells. Free Radic Biol Med 40:2047–2055

    Article  CAS  PubMed  Google Scholar 

  2. Pipeleers D, Hoorens A, Marichal-Pipeleers M, Van de CM, Bouwens L, Ling Z (2001) Role of pancreatic beta-cells in the process of beta-cell death. Diabetes 50(Suppl 1):S52–S57

    Article  CAS  PubMed  Google Scholar 

  3. Tang C, Han P, Oprescu AI, Lee SC, Gyulkhandanyan AV, Chan GN, Wheeler MB, Giacca A (2007) Evidence for a role of superoxide generation in glucose-induced beta-cell dysfunction in vivo. Diabetes 56:2722–2731

    Article  CAS  PubMed  Google Scholar 

  4. Hou N, Torii S, Saito N, Hosaka M, Takeuchi T (2008) Reactive oxygen species-mediated pancreatic beta-cell death is regulated by interactions between stress-activated protein kinases, p38 and c-Jun N-terminal kinase, and mitogen-activated protein kinase phosphatases. Endocrinology 149:1654–1665

    Article  CAS  PubMed  Google Scholar 

  5. Tiedge M, Lortz S, Drinkgern J, Lenzen S (1997) Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 46:1733–1742

    Article  CAS  PubMed  Google Scholar 

  6. Tiedge M, Lortz S, Munday R, Lenzen S (1998) Complementary action of antioxidant enzymes in the protection of bioengineered insulin-producing RINm5F cells against the toxicity of reactive oxygen species. Diabetes 47:1578–1585

    Article  CAS  PubMed  Google Scholar 

  7. Kajimoto Y, Kaneto H 2004 Role of oxidative stress in pancreatic beta-cell dysfunction. Ann N Y Acad Sci 1011:168–176

    Google Scholar 

  8. Lenzen S, Drinkgern J, Tiedge M (1996) Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 20:463–466

    Article  CAS  PubMed  Google Scholar 

  9. Robertson RP (2004) Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem 279:42351–42354

    Article  CAS  PubMed  Google Scholar 

  10. Robertson RP, Harmon JS (2006) Diabetes, glucose toxicity, and oxidative stress: a case of double jeopardy for the pancreatic islet beta cell. Free Radic Biol Med 41:177–184

    Article  CAS  PubMed  Google Scholar 

  11. Kaneto H, Kajimoto Y, Miyagawa J, Matsuoka T, Fujitani Y, Umayahara Y, Hanafusa T, Matsuzawa Y, Yamasaki Y, Hori M (1999) Beneficial effects of antioxidants in diabetes: possible protection of pancreatic beta-cells against glucose toxicity. Diabetes 48:2398–2406

    Article  CAS  PubMed  Google Scholar 

  12. Navarro-Tableros V, Sanchez-Soto MC, Garcia S, Hiriart M (2004) Autocrine regulation of single pancreatic beta-cell survival. Diabetes 53:2018–2023

    Article  CAS  PubMed  Google Scholar 

  13. Aston-Mourney K, Proietto J, Morahan G, Andrikopoulos S (2008) Too much of a good thing: why it is bad to stimulate the beta cell to secrete insulin. Diabetologia 51:540–545

    Article  CAS  PubMed  Google Scholar 

  14. Del PA (2008) Insulin may have a role to play in protecting beta cells from deterioration in diabetes. Diabetologia 51:1340–1342

    Article  Google Scholar 

  15. Guillen C, Bartolome A, Nevado C, Benito M (2008) Biphasic effect of insulin on beta cell apoptosis depending on glucose deprivation. FEBS Lett 582:3855–3860

    Article  CAS  PubMed  Google Scholar 

  16. Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A (2009) Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev 89:27–71

    Article  CAS  PubMed  Google Scholar 

  17. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279

    Article  CAS  PubMed  Google Scholar 

  18. Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 1:1458–1461

    Article  CAS  PubMed  Google Scholar 

  19. Numazawa S, Sakaguchi H, Aoki R, Taira T, Yoshida T (2008) Regulation of the susceptibility to oxidative stress by cysteine availability in pancreatic beta cells. Am J Physiol Cell Physiol 295:C468–C474

    Article  CAS  PubMed  Google Scholar 

  20. Rasilainen S, Nieminen JM, Levonen AL, Otonkoski T, Lapatto R (2002) Dose-dependent cysteine-mediated protection of insulin-producing cells from damage by hydrogen peroxide. Biochem Pharmacol 63:1297–1304

    Article  CAS  PubMed  Google Scholar 

  21. Verga FC, Panacchia L, Bucci B, Stigliano A, Cavallo MG, Brunetti E, Toscano V, Misiti S (2006) 3,5,3′-triiodothyronine (T3) is a survival factor for pancreatic beta-cells undergoing apoptosis. J Cell Physiol 206:309–321

    Article  Google Scholar 

  22. Hayes GR, Lockwood DH (1987) Role of insulin receptor phosphorylation in the insulinomimetic effects of hydrogen peroxide. Proc Natl Acad Sci USA 84:8115–8119

    Article  CAS  PubMed  Google Scholar 

  23. Ge X, Yu Q, Qi W, Shi X, Zhai Q (2008) Chronic insulin treatment causes insulin resistance in 3T3-L1 adipocytes through oxidative stress. Free Radic Res 42:582–591

    Article  CAS  PubMed  Google Scholar 

  24. Goldstein BJ, Mahadev K, Wu X (2005) Redox paradox: insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets. Diabetes 54:311–321

    Article  CAS  PubMed  Google Scholar 

  25. Krieger-Brauer HI, Kather H (1992) Human fat cells possess a plasma membrane-bound H2O2-generating system that is activated by insulin via a mechanism bypassing the receptor kinase. J Clin Invest 89:1006–1013

    Article  CAS  PubMed  Google Scholar 

  26. Goldstein BJ, Bittner-Kowalczyk A, White MF, Harbeck M (2000) Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B. Possible facilitation by the formation of a ternary complex with the Grb2 adaptor protein. J Biol Chem 275:4283–4289

    Article  CAS  PubMed  Google Scholar 

  27. Mehdi MZ, Pandey NR, Pandey SK, Srivastava AK (2005) H2O2-induced phosphorylation of ERK1/2 and PKB requires tyrosine kinase activity of insulin receptor and c-Src. Antioxid Redox Signal 7:1014–1020

    Article  CAS  PubMed  Google Scholar 

  28. Mandrup-Poulsen T (2003) Apoptotic signal transduction pathways in diabetes. Biochem Pharmacol 66:1433–1440

    Article  CAS  PubMed  Google Scholar 

  29. Bertrand F, Atfi A, Cadoret A, L’Allemain G, Robin H, Lascols O, Capeau J, Cherqui G (1998) A role for nuclear factor kappaB in the antiapoptotic function of insulin. J Biol Chem 273:2931–2938

    Article  CAS  PubMed  Google Scholar 

  30. Bertrand F, Desbois-Mouthon C, Cadoret A, Prunier C, Robin H, Capeau J, Atfi A, Cherqui G (1999) Insulin antiapoptotic signaling involves insulin activation of the nuclear factor kappaB-dependent survival genes encoding tumor necrosis factor receptor-associated factor 2 and manganese-superoxide dismutase. J Biol Chem 274:30596–30602

    Article  CAS  PubMed  Google Scholar 

  31. Kang S, Song J, Kang H, Kim S, Lee Y, Park D (2003) Insulin can block apoptosis by decreasing oxidative stress via phosphatidylinositol 3-kinase- and extracellular signal-regulated protein kinase-dependent signaling pathways in HepG2 cells. Eur J Endocrinol 148:147–155

    Article  CAS  PubMed  Google Scholar 

  32. Rakatzi I, Seipke G, Eckel J (2003) [LysB3, GluB29] insulin: a novel insulin analog with enhanced beta-cell protective action. Biochem Biophys Res Commun 310:852–859

    Article  CAS  PubMed  Google Scholar 

  33. Valverde AM, Mur C, Brownlee M, Benito M (2004) Susceptibility to apoptosis in insulin-like growth factor-I receptor-deficient brown adipocytes. Mol Biol Cell 15:5101–5117

    Article  CAS  PubMed  Google Scholar 

  34. Chaoui D, Faussat AM, Majdak P, Tang R, Perrot JY, Pasco S, Klein C, Marie JP, Legrand O (2006) JC-1, a sensitive probe for a simultaneous detection of P-glycoprotein activity and apoptosis in leukemic cells. Cytometry B Clin Cytom 70:189–196

    PubMed  Google Scholar 

  35. Dogliotti G, Galliera E, Dozio E, Vianello E, Villa RE, Licastro F, Barajon I, Corsi MM (2010) Okadaic acid induces apoptosis in Down syndrome fibroblasts. Toxicol In Vitro 24:815–821

    Article  CAS  PubMed  Google Scholar 

  36. Kothakota S, Azuma T, Reinhard C, Klippel A, Tang J, Chu K, McGarry TJ, Kirschner MW, Koths K, Kwiatkowski DJ, Williams LT (1997) Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278:294–298

    Article  CAS  PubMed  Google Scholar 

  37. Porras A, Zuluaga S, Valladares A, Alvarez AM, Herrera B, Fabregat I, Benito M (2003) Long-term treatment with insulin induces apoptosis in brown adipocytes: role of oxidative stress. Endocrinology 144:5390–5401

    Article  CAS  PubMed  Google Scholar 

  38. May JM, de HC (1979) Insulin-stimulated intracellular hydrogen peroxide production in rat epididymal fat cells. J Biol Chem 254:2214–2220

    CAS  PubMed  Google Scholar 

  39. Mahadev K, Wu X, Zilbering A, Zhu L, Lawrence JT, Goldstein BJ (2001) Hydrogen peroxide generated during cellular insulin stimulation is integral to activation of the distal insulin signaling cascade in 3T3-L1 adipocytes. J Biol Chem 276:48662–48669

    Article  CAS  PubMed  Google Scholar 

  40. Espinosa A, Garcia A, Hartel S, Hidalgo C, Jaimovich E (2009) NADPH oxidase and hydrogen peroxide mediate insulin-induced calcium increase in skeletal muscle cells. J Biol Chem 284:2568–2575

    Article  CAS  PubMed  Google Scholar 

  41. Schmid E, Hotz-Wagenblatt A, Hacj V, Droge W (1999) Phosphorylation of the insulin receptor kinase by phosphocreatine in combination with hydrogen peroxide: the structural basis of redox priming. FASEB J 13:1491–1500

    CAS  PubMed  Google Scholar 

  42. Biswas S, Gupta MK, Chattopadhyay D, Mukhopadhyay CK (2007) Insulin-induced activation of hypoxia-inducible factor-1 requires generation of reactive oxygen species by NADPH oxidase. Am J Physiol Heart Circ Physiol 292:H758–H766

    Article  CAS  PubMed  Google Scholar 

  43. Guichard C, Pedruzzi E, Fay M, Ben MS, Coant N, Daniel F, Ogier-Denis E (2006) The Nox/Duox family of ROS-generating NADPH oxidases. Med Sci (Paris) 22:953–959

    Google Scholar 

  44. Guichard C, Moreau R, Pessayre D, Epperson TK, Krause KH (2008) NOX family NADPH oxidases in liver and in pancreatic islets: a role in the metabolic syndrome and diabetes? Biochem Soc Trans 36:920–929

    Article  CAS  PubMed  Google Scholar 

  45. Srinivasan S, Ohsugi M, Liu Z, Fatrai S, Bernal-Mizrachi E, Permutt MA (2005) Endoplasmic reticulum stress-induced apoptosis is partly mediated by reduced insulin signaling through phosphatidylinositol 3-kinase/Akt and increased glycogen synthase kinase-3beta in mouse insulinoma cells. Diabetes 54:968–975

    Article  CAS  PubMed  Google Scholar 

  46. Johnson JD, Bernal-Mizrachi E, Alejandro EU, Han Z, Kalynyak TB, Li H, Beith JL, Gross J, Warnock GL, Townsend RR, Permutt MA, Polonsky KS (2006) Insulin protects islets from apoptosis via Pdx1 and specific changes in the human islet proteome. Proc Natl Acad Sci USA 103:19575–19580

    Article  CAS  PubMed  Google Scholar 

  47. Aikin R, Hanley S, Maysinger D, Lipsett M, Castellarin M, Paraskevas S, Rosenberg L (2006) Autocrine insulin action activates Akt and increases survival of isolated human islets. Diabetologia 49:2900–2909

    Article  CAS  PubMed  Google Scholar 

  48. Muller D, Jones PM, Persaud SJ (2006) Autocrine anti-apoptotic and proliferative effects of insulin in pancreatic beta-cells. FEBS Lett 580:6977–6980

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported in part by the Russell Berrie Foundation and D-Cure, Diabetes Care in Israel. SF and EB contributed equally to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Sampson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sampson, S.R., Bucris, E., Horovitz-Fried, M. et al. Insulin increases H2O2-induced pancreatic beta cell death. Apoptosis 15, 1165–1176 (2010). https://doi.org/10.1007/s10495-010-0517-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0517-5

Keywords

Navigation