Skip to main content

Apoptosis in Pancreatic β-Islet Cells in Type 1 and Type 2 Diabetes

  • Living reference work entry
  • First Online:
Islets of Langerhans, 2. ed.
  • 184 Accesses

Abstract

Apoptosis plays an important role in the pathophysiology of both type 1 and type 2 diabetes. In type 1 diabetes, β-cell death by apoptosis following autoimmune insulitis causes an absolute insulin deficiency triggered by an extrinsic receptor-mediated pathway, which activates a cascade of caspase family reaction. The etiology of type 2 diabetes is multifactorial, including obesity-associated insulin resistance, defective insulin secretion, and loss of β-cell mass through β-cell apoptosis. β-cell apoptosis is mediated through a milliard of caspase family cascade machinery in both type 1 and type 2 diabetes. The glucose-induced insulin secretion is the principle pathophysiology of diabetes and insufficient insulin secretion results in chronic hyperglycemia and diabetes. Recently, hyperglycemia-induced β-cell apoptosis has been extensively studied with regard to the balance of pro-apoptotic genes (Bad, Bid, and Bik) and the anti-apoptotic Bcl family toward apoptosis in in vitro isolated islets. Apoptosis can only occur when the concentration of pro-apoptotic Bcl-2 exceeds that of anti-apoptotic proteins at the mitochondrial membrane of the intrinsic pathway.

The bulk of recent research on hyperglycemia-induced apoptosis on β-cells unveiled complex details of glucose toxicity on β-cells at a molecular level coupled with cell membrane potential by the K+ and Ca2+ channels opening and closing. Further, animal models using knockout mice will shed light on our basic understanding of the pathophysiology of diabetes as a glucose metabolic disease complex, and on the balance of the anti-apoptotic Bcl family and pro-apoptotic genes. The cumulative knowledge will provide a better understanding of the metabolic control of glucose metabolism at a molecular level and will lead to eventual prevention and therapeutic application for type 1 and type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allison J, Thomas HE, Catterall T, Catterall T, Kay TW, Strasser A (2005) Transgenic expression of dominant-negative Fas-associated death domain protein in beta cells protects against Fas ligand-induced apoptosis and reduces spontaneous diabetes in nonobese diabetic mice. J Immunol 175:293–301

    Article  PubMed  CAS  Google Scholar 

  • Anguiano M, Nowak RJ, Lansbury PT Jr (2002) Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanisms that may be relevant to type II diabetes. Biochemistry 41:11338–11343

    Article  PubMed  CAS  Google Scholar 

  • Antinozzi PA, Ishihara H, Newgard CB, Wollheim CB (2002) Mitochondrial metabolism sets the maximal limit of fuel-stimulated insulin secretion in a model pancreatic beta cell: a survey of four fuel secretagogues. J Biol Chem 277:11746–11755

    Article  PubMed  CAS  Google Scholar 

  • Barett KL, Willingham JM, Garvin AJ, Willingham MC (2001) Advances in cytochemical methods for detection of apoptosis. J Histochem Cytochem 49:821–832

    Article  Google Scholar 

  • Begoya FJ, Matschinsky F, Shimizu T, O’Neil JJ, Appel MC (1986) Differential regulation of glucokinase activity in pancreatic islets. J Biol Chem 261:10760–10764

    Google Scholar 

  • Berggren PO, Larson D (1994) Ca2+ and pancreatic B-cell function. Biochem Soc Trans 22:12–18

    PubMed  CAS  Google Scholar 

  • Boatright KM, Salvesen GS (2003) Mechanisms of caspase activation. Curr Opin Cell Biol 15:725–731

    Article  PubMed  CAS  Google Scholar 

  • Bonner-Weir S (2000a) Islet growth and development in the adult. J Mol Endocrinol 24:297–302

    Article  PubMed  CAS  Google Scholar 

  • Bonner-Weir S (2000b) Life and death of the pancreatic beta cells. Trends Endocrinol Metab 11:375–378

    Article  PubMed  CAS  Google Scholar 

  • Bonner-Weir S, O’Brien TD (2008) Islets in type 2 diabetes in honor of Dr Robert C Turner. Diabetes 57:2899–2904

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brandhorst D, Kumarasamy V, Maatoui A, Aht A, Bretzel RG, Brandhorst H et al (2006) Porcine islet graft function is affected by pretreatment with a caspase-3 inhibitor. Cell Transplant 15:311–317

    Article  PubMed  Google Scholar 

  • Buse JB, Weyer C, Maggs DC (2002) Amylin replacement with Pramlintide in type 1 and type 2 diabetes: a physiological approach to overcome a barrier with insulin therapy. Clin Diabetes 20:137–144

    Article  Google Scholar 

  • Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003a) β cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110

    Article  PubMed  CAS  Google Scholar 

  • Butler AE, Janson J, Soeller WC, Butler PC (2003b) Increased beta-cell apoptosis prevents adoptive increase in beta-cell mass in mouse model of type 2 diabetes: evidence for role of islet amyloid formation rather than direct action of amyloid. Diabetes 52:2304–2314

    Article  PubMed  CAS  Google Scholar 

  • Chan SI, Yu VC (2004) Proteins of the Bcl-2 family in apoptosis signaling: from mechanic insights to therapeutic opportunities. Clin Exp Pharmacol Physiol 31:119–128

    Article  PubMed  CAS  Google Scholar 

  • Chandra J, Zhivotovsky B, Zaitsev S, Juntti-Berggren H, Berggren PO, Orreni S (2001) Role of apoptosis in pancreatic β-cell death in diabetes. Diabetes 50(Suppl 1):S44–S47

    Article  PubMed  CAS  Google Scholar 

  • Cheng G, Ahu L, Mahato RI (2008) Caspase gene silencing for inhibiting apoptosis in insulin cells and human islets. Mol Pharmacol 5:1093–1102

    Article  CAS  Google Scholar 

  • Clark A, Nilsson MR (2004) Islet amyloid: a complication of islet dysfunction or an aetiological factor in type 2 diabetes? Diabetologia 47:157–169

    Article  PubMed  CAS  Google Scholar 

  • Clark A, Wells CA, Buley ID, Cruickshank JK, Vanhegan RI et al (1988) Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis quantitative changes in the pancreas in type 2 diabetes. Diabetes Res 9:151–159

    PubMed  CAS  Google Scholar 

  • Cleaved caspase-3 (Asp 175) antibody (2006). vol 9661. Cell Signaling Technology, Beverly, MA, Cat. # 9661 pp 1–7

    Google Scholar 

  • Cooper GJ, Willis AC, Clark A, Tumer RC, Sim RB, Reid KB (1987) Purification and characterization of a peptide from amyloid-rich pancreas of type 2 diabetic pancreas. Proc Natl Acad Sci U S A 84:8628–8632

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cucca F, Lampis R, Congia M, Angius E, Nutland S et al (2001) A correlation between the relative predisposition of MHC class II alleles to type 1 diabetes and their structure of their proteins. Hum Mol Gen 10:2025–2037

    Article  PubMed  CAS  Google Scholar 

  • Daniel NN, Gramm CF, Scorrano L, Zhang CY, Kraus S et al (2003) BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424:952–956

    Article  CAS  Google Scholar 

  • Daniel NN, Walensky LD, Zhang CY, Choi CS, Fisher JK et al (2008) Dual role of proapoptotic BAD in insulin secretion and beta cell survival. Nat Med 14:144–153

    Article  CAS  Google Scholar 

  • De Vos A, Heimberg H, Quatier E, Huypens P, Bouwens L et al (1995) Human and rat beta cells differ in glucose transporter but not in glucokinase gene expression. J Clin Invest 96:2489–2495

    Article  PubMed Central  PubMed  Google Scholar 

  • DeFrenzo RA (1999) Pharmacologic therapy for type 2 diabetes mellitus. Ann Int Med 131:281–303

    Article  Google Scholar 

  • Duan WR, Garmer DS, Williams SD, Funkes-Shippy C, Spath I, Blomme EAG (2003) Comparison of immunohistochemistry of activated caspase-3 and cleaved cytokeratin 18 with the TUNEL method for quantification of apoptosis in histological section of PC-3 subcutaneous xenografts. J Pathol 199:221–228

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich JC, Ratner IM (1961) Amyloidosis of the islets of Langerhans. A restudy of islet hyaline in diabetic and non-diabetic individuals. Am J Pathol 38:49–59

    PubMed Central  PubMed  CAS  Google Scholar 

  • Eisenbarth GS, Kotzin BL (2003) Enumerating autoreactive T cells in peripheral blood: a big step in diabetes prediction. J Clin Invest 111:179–181

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Emamaullee JA, Shapiro AM (2006) Interventional strategies to prevent β-cell apoptosis in islet transplantation. Diabetes 55:1907–1914

    Article  PubMed  CAS  Google Scholar 

  • Engel MFM, Khemtemourian I, Kleijer CC, Meeklik HJ, Jacobs J et al (2008) Membrane damage by human islet amyloid polypeptide through fibril growth at the membrane. Proc Natl Acad Sci U S A 105:6033–6038

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Faustman D, Eisenbarth G, Daley J, Beitmyer J (1989) Abnormal T lymphocytes subsets intype1 diabetes mellitus. Analysis with anti-2H4 andanti-4B4 antibodies. Diabetes 38:1462–1468

    Article  PubMed  CAS  Google Scholar 

  • Faustman DL, Li X, Lim HY, Eisenbarth G, Avruch J, Guo J (1991) Linkage of family major histocompatibility complex class I to autoimmune diseases. Science 254:1756–1761

    Article  PubMed  CAS  Google Scholar 

  • Federici M, Hrivbal M, Perego L, Ranalli M, Caradonna Z et al (2001) High glucose causes apoptosis in cultured human pancreatic islets of Langerhans. A potential role for regulation of specific Bcl family genes toward an apoptotic cell death program. Diabetes 50:1290–1301

    Article  PubMed  CAS  Google Scholar 

  • Finegood D, Scaglia L, Bonner-Weir S (1995) Dynamics of β-cell mass in the growing rat pancreas: estimation with a simple mathematical model. Diabetes 44:249–256

    Article  PubMed  CAS  Google Scholar 

  • Fineman M, Weyer C, Maggs DG, Strobel S, Koltermano G (2002) The human amylin analog, pramlintide, reduces postprandial hyperglucagonemia in patients with type 2 diabetes mellitus. Horm Metab Res 34:504–508

    Article  PubMed  CAS  Google Scholar 

  • Fridlyand L, Philson LH (2010) Glucose sensing in the pancreatic beta cells: a computational systems analysis. Theor Biol Med Model 7:1–44

    Article  CAS  Google Scholar 

  • Froguel P, Vaxillaire M, Sun F, Valho G, Zouali H et al (1992) Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin -dependent diabetes mellitus. Nature 356:162–164

    Article  PubMed  CAS  Google Scholar 

  • Gown AM, Willingham MC (2002) Improved detection of apoptotic cells in archival paraffin sections: immunohistochemistry using antibodies to cleaved caspase3. J Histochem Cytochem 50:449–454

    Article  PubMed  CAS  Google Scholar 

  • Green D (2005) Apoptotic pathways: ten minutes to death. Cell 121:671–674

    Article  PubMed  CAS  Google Scholar 

  • Gross A, McDonnell JM, Korsmeyer SJ (1999) Bcl-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911

    Article  PubMed  CAS  Google Scholar 

  • Haataja L, Gurlo T, Huang CJ, Butler PC (2008) Islet amyloid in type 2 diabetes and the toxic oligomer hypothesis. Endocr Rev 29:303–316

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hayashi T, Faustman DL (2003) Role of defective apoptosis in type 1 diabetes and other autoimmune diseases. Rec Prog Horm Res 58:131–153

    Article  PubMed  CAS  Google Scholar 

  • Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  PubMed  CAS  Google Scholar 

  • Hirata H, Takahashi A, Kobayashi S, Yonehara S, Sawai H et al (1998) Caspases are activated in a branched protease cascade and control distinct down-stream processes in Fas-induced apoptosis. J Exp Med 187:587–600

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hoppener JW, Ahren B, Lips CJ (2000) Islet amyloid and type 2 diabetes mellitus. N Eng J Med 343:411–419

    CAS  Google Scholar 

  • Hui H, Dotta F, De Maria U, Perfetti R (2004) Role of caspases in the regulation of apoptotic pancreatic islet beta-cell death. J Cell Physiol 200:177–200

    Article  PubMed  CAS  Google Scholar 

  • Hull RI, Westermark GT, Westermark P, Kahn SE (2004) Islet amyloid: a critical entity in the pathogenesis of type 2diabetes. J Clin Endocrinol Metab 89:3629–3643

    Article  PubMed  CAS  Google Scholar 

  • Innedian BB (1993) Mammalian glucokinase and its gene. Biochem J 293:1–13

    Google Scholar 

  • Jansen A, Van Hagen M, Drexhage HA (1995) Defective mutation and function of antigen-presenting cells in type1 diabetes. Lancet 345:491–492

    Article  PubMed  CAS  Google Scholar 

  • Jansen J, Ashley RH, Harrison D, McIntyre S, Butler PC (1999) The mechanisms of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particle. Diabetes 48:491–498

    Article  Google Scholar 

  • Jurgens CA, Toukatly MN, Flinger CL, Udayasankar J (2011) Subramanian, SL et al: β-cell loss and β-cell apoptosis inhuman type2 diabetes are related to islet amyloid deposition. Am J Pathol 178:2632–2640

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kahn SE, Andrikopoulos S, Verchere CBN (1999) Islet amyloid: a long-recognized but underappreciated pathological feature of type 2 diabetes. Diabetes 48:241–253

    Article  PubMed  CAS  Google Scholar 

  • Karbowski M, Norris KL, Cleland NM, Jeong SY, Youle RJ (2006) Role of Bax and Bak in mitochondrial morphogenesis. Nature 443:658–662

    Article  PubMed  CAS  Google Scholar 

  • Kayed R, Head E, Thompson JI, McIntyre TM, Milton SC et al (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    Article  PubMed  CAS  Google Scholar 

  • Kerr JP, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-range implications in tissue kinetics. Br J Cancer 26:239–257

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kruger DF, Gatcomb PM, Owen SK (1999) Clinical implication of amylin and amylin deficiency. Diabetes Educ 25:389–397

    Article  PubMed  CAS  Google Scholar 

  • Leahy JL, Bonner-Weir S, Weir CC (1992) Beta-cell dysfunction induced by chronic hyperglycemia: current ideas on mechanisms of impaired glucose-induced insulin secretion. Diabetes Care 15:442–455

    Article  PubMed  CAS  Google Scholar 

  • Lee SC, Pervaiz S (2007) Apoptosis in pathophysiology of diabetes mellitus. Int J Biochem 39:497–504

    Article  CAS  Google Scholar 

  • Leonardi O, Mints G, Hussain MA (2003) Beta-cell apoptosis in the pathogenesis of human type 2 diabetes mellitus. Eur J Endocrinol 149:99–102

    Article  PubMed  CAS  Google Scholar 

  • Liang Y, Bai N, Doliba C, Wang L, Barner DK, Matschinsky FM (1996) Glucose metabolism and insulin release in mouse HC9 cells, as model of wild-type pancreatic beta cells. Am J Physiol 270:E846–E857

    PubMed  CAS  Google Scholar 

  • Luciani DS, White SA, Widenmaier SB, Saran VV, Taghizadeh F et al (2013) Bcl-2 and Bcl-xL suppress glucose signaling in pancreatic β-cells. Diabetes 62:170–182

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mandrup-Poulsen T (2001) β-cell apoptosis: stimuli and signaling. Diabetes 50(Suppl 1):S58–S63

    Article  PubMed  CAS  Google Scholar 

  • Marchetti P, Guerra S, Marselli L, Marselli L, Lupi R, Masini M et al (2004) Pancreatic islets from type 2 diabetic patients have functional defects and increased apoptosis that are ameliorated by metformin. J Clin Endocrinol Metab 89:5535–5541

    Article  PubMed  CAS  Google Scholar 

  • Martin SJ, Green DR (1995) Protease activation during apoptosis: death by a thousand cuts? Cell 82:349–452

    Article  PubMed  CAS  Google Scholar 

  • Matschinsky FM (1990) Glucokinase as glucose sensor and metabolic signal generator in pancreatic β-cell and hepatocytes. Diabetes 39:647–652

    Article  PubMed  CAS  Google Scholar 

  • Matschinsky FM (1995) Banting lecture. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes 1995(45):223–241

    Google Scholar 

  • Matschinsky F, Liang Y, Kesavan P (1993) Glucokinase as pancreatic beta cell sensor and diabetes. J Clin Invest 92:2092–2098

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • McDonald PE, Joseph JW, Rorsman P (2005) Glucose-sensing mechanisms in pancreatic β-cells. Phil Trans R Soc 360:2211–2225

    Article  CAS  Google Scholar 

  • McKenzie MD, Jamieson E, Jansen ES, Scott CL, Huang DCS et al (2010) Glucose induces pancreatic islet cell apoptosis that requires the BH3-only proteins Bim and Puma and multi-BH domain protein Bax. Diabetes 59:644–652

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mirzabekov TA, Lin MC, Kagan BL (1996) Pore formation by the cytotoxic islet amyloid peptide amylin. J Biol Chem 27:1988–1992

    Google Scholar 

  • Nakano M, Matsumoto I, Sawada T, Ansite J, Oberbroeckling J et al (2004) Caspase-3 inhibitor prevents apoptosis of human islets immediately after isolation and improves islet graft function. Pancreas 29:104–109

    Article  PubMed  CAS  Google Scholar 

  • Newgard CB, McGarry JD (1995) Metabolic coupling factors in pancreatic β-cell signal transduction. Ann Rev Biochem 64:689–719

    Article  PubMed  CAS  Google Scholar 

  • Nicholson DW, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 22:299–306

    Article  PubMed  CAS  Google Scholar 

  • O’Brien TD, Glabe CG, Butler PC (2010) Evidence for proteotoxicity in beta cells in type 2 diabetes: toxic islet amyloid oligomers from intracellularly in the secretory pathway. Am J Pathol 176:861–869

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ou D, Wang X, Metzger DL, James RFL, Pozzilli P et al (2005) Synergetic inhibition of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis inhuman pancreatic beta cells by Bcl-2 and X-linked inhibitor of apoptosis. Hum Immunol 66:274–284

    Article  PubMed  CAS  Google Scholar 

  • Peter ME, Krammer PH (1998) Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis. Curr Opin Immunol 10:545–551

    Article  PubMed  CAS  Google Scholar 

  • Porter JR, Barette TG (2005) Monogenic syndromes of abnormal glucose homeostasis: clinical review and relevance to the understanding of the pathology of insulin resistance and β-cell failure. J Med Genet 42:893–902

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rabinovitch A, Skyler JS (1998) Prevention of type 1 diabetes. Med Clin North Am 82:739–755

    Article  PubMed  CAS  Google Scholar 

  • Real PJ, Cao Y, Wang R, Nikolovska-Coleska Z, Sanz-Ortiz J et al (2004) Breast cancer cells can evade apoptosis-mediated selective killing by a novel small molecule inhibitor of Bcl-2. Cancer Res 64:7947–7953

    Article  PubMed  CAS  Google Scholar 

  • Reaven G (1988) Role of insulin resistance in human disease. Diabetes 37:1595–1607

    Article  PubMed  CAS  Google Scholar 

  • Rhodes CJ (2005) Type 2 diabetes – a matter of β-cell life and death? Science 307:380–384

    Article  PubMed  CAS  Google Scholar 

  • Ritzel RA, Butler PC (2003) Replication increases β-cell vulnerability to human islet amyloid polypeptide-induced apoptosis. Diabetes 52:1701–1708

    Article  PubMed  CAS  Google Scholar 

  • Rong YP, Bultynck G, Aromolaran AS, Zhong F, Parys JB et al (2009) The BH4 domain of Bcl-2 inhibits ER calcium release and apoptosis by binding the regulatory and coupling domain of the IP3 receptor. Proc Natl Acad Sci U S A 106:14397–14402

    Article  PubMed Central  PubMed  Google Scholar 

  • Rossetti I, Giaccari A, DeFrenzo RA (1990) Glucose toxicity. Diabetes Care 13:610–630

    Article  PubMed  CAS  Google Scholar 

  • Sakahira H, Enari M, Nagata S (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391:96–99

    Article  PubMed  CAS  Google Scholar 

  • Saldeen J (2000) Cytokines induce both necrosis and apoptosis via a common Bcl-2-inhibitable pathway in rat insulin-producing cells. Endocrinology 141:2003–2010

    PubMed  CAS  Google Scholar 

  • Sava V, Caates JP, Hall PA (2001) Analysis of apoptosis in tissue sections. Endocr Mol Biol 174:347–359

    Google Scholar 

  • Scaglia L, Cahill CJ, Finegood DT (1997) Apoptosis participates in the remodeling of endocrine pancreas in the neonatal rat. Endocrinology 138:1736–1741

    PubMed  CAS  Google Scholar 

  • Shimizu T, Knowles BB, Matschinsky FM (1988) Control of glucose phosphorylation and glucose usage in clonal insulinoma cells. Diabetes 37:563–568

    Article  PubMed  CAS  Google Scholar 

  • Simonson DC (1990) Hyperinsulinemia and its sequence. Horm Metab Res 22(Suppl):17–25

    CAS  Google Scholar 

  • Stassi GD, De Maria R, Trucco G, Rudert W, Testi R et al (1997) Nitric oxide primes pancreatic beta cells for Fas (CD95)-mediated destruction in insulin-dependent diabetes mellitus. J Exp Med 186:1193–1200

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tewari M, Quan LT, O’Rourke K, Dosmoyers K, Zeng Z, Beidler DR et al (1995) Yama/cp32β, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81:801–809

    Article  PubMed  CAS  Google Scholar 

  • Tomita T (2005) Amyloidosis of pancreatic islets in primary amyloidosis (AL type). Pathol Int 55:223–227

    Article  PubMed  Google Scholar 

  • Tomita T (2009) Cleaved caspase-3 immunocytochemical staining for pancreatic islets and pancreatic endocrine tumors. A potential marker for biological malignancy. Islets 2:82–88

    Article  Google Scholar 

  • Tomita T (2010a) Immunocytochemical localisation of cleaved caspase-3 in pancreatic islets from type 2 diabetic subjects. Pathology 42:432–437

    Article  PubMed  Google Scholar 

  • Tomita T (2010b) Immunocytochemical localization of cleaved casspase-3 in pancreatic islets from type 1 diabetic subjects. Islets 2:24–29

    Article  PubMed  Google Scholar 

  • Tomita T (2012) Islet amyloid polypeptide in pancreatic islets from type 2 diabetic subjects. Islets 4:223–232

    Article  PubMed Central  PubMed  Google Scholar 

  • Tomita T, Scarpelli DG (1977) Interaction of cyclic AMP and alloxan on insulin secretion in isolated rat islets perifused in vitro. Endocrinology 100:1327–1333

    Article  PubMed  CAS  Google Scholar 

  • Tomita T, Lacy PE, Matschinsky FM, McDaniel M (1974) Effect of alloxan on insulin secretion in isolated rat islets perifused in vitro. Diabetes 23:517–524

    PubMed  CAS  Google Scholar 

  • Tsujimoto Y, Shimizu S (2007) VDAC regulation by the Bcl-2 family of proteins. Cell Death Differ 7:1174–1181

    Article  CAS  Google Scholar 

  • Urusova IA, Farila L, Hui H, D’Amico E, Perfetti R (2004) GLP-inhibition of pancreatic islet cell apoptosis. Trends Endocrinol Metab 15:27–33

    Article  PubMed  CAS  Google Scholar 

  • Westermark P, Westermark C, Wilander E, Sletten K (1986) A novel peptide in the calcitonin gene related peptide family as an amyloid fibril protein in the endocrine pancreas. Biochem Biophys Res Commun 140:827–831

    Article  PubMed  CAS  Google Scholar 

  • Weyer C, Maggs DG, Young AA, Kohlman OG (2001) Amylin replacement with pramlintide as an adjunct to insulin therapy in type 1 and type 2 diabetes mellitus: a physiological approach toward improved metabolic control. Curr Pharm Des 7:1353–1373

    Article  PubMed  CAS  Google Scholar 

  • Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG (2008) Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol 155:173–181

    Article  Google Scholar 

  • Yi CH, Pan H, Seebacher J, Jang F, Hyberts SG, Hoffron GJ et al (2011) Metabolic regulation of protein N-alpha acetylation by Bcl-xL promotes cell survival. Cell 146:607–620

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhou YP, Pena JC, Roe MW, Mittal A, Levisetti M et al (2000) Overexpression of Bcl-xL in beta cells prevents cell death but impairs mitochondrial signal for insulin secretion. Am J Physiol Endocrinol Metab 278:E340–E351

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuo Tomita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Tomita, T. (2013). Apoptosis in Pancreatic β-Islet Cells in Type 1 and Type 2 Diabetes. In: Islam, M. (eds) Islets of Langerhans, 2. ed.. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6884-0_45-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6884-0_45-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6884-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics