Skip to main content

Advertisement

Log in

Bcl2 family proteins in carcinogenesis and the treatment of cancer

  • Cell Death and Disease
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Deregulation of Bcl2 family members is a frequent feature of human malignant diseases and causal for therapy resistance. A number of studies have recently shed light onto the role of pro- and anti-apoptotic Bcl2 family members in tumour-pathogenesis and in mediating the effects of classical as well as novel front-line anticancer agents, allowing the development of more efficient and more precisely targeted treatment regimens. Most excitingly, recent progress in our understanding of how Bcl2-like proteins maintain or perturb mitochondrial integrity has finally enabled the development of rational-design based anticancer therapies that directly target Bcl2 regulated events at the level of mitochondria. This review aims to give an overview on the most recent findings on the role of the Bcl2 family in tumour development in model systems of cancer, to relate these findings with observations made in human pathologies and drug-action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59. doi:10.1038/nrm2308

    Article  PubMed  CAS  Google Scholar 

  2. Huang DC, Adams JM, Cory S (1998) The conserved N-terminal BH4 domain of Bcl-2 homologues is essential for inhibition of apoptosis and interaction with CED-4. EMBO J 17:1029–1039. doi:10.1093/emboj/17.4.1029

    Article  PubMed  CAS  Google Scholar 

  3. Willis SN, Adams JM (2005) Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol 17:617–625. doi:10.1016/j.ceb.2005.10.001

    Article  PubMed  CAS  Google Scholar 

  4. Chen L, Willis SN, Wei A et al (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17:393–403. doi:10.1016/j.molcel.2004.12.030

    Article  PubMed  CAS  Google Scholar 

  5. Certo M, Moore Vdel G, Nishino M et al (2006) Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9:351–365. doi:10.1016/j.ccr.2006.03.027

    Article  PubMed  CAS  Google Scholar 

  6. Letai A, Bassik M, Walensky L, Sorcinelli M, Weiler S, Korsmeyer S (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2:183. doi:10.1016/S1535-6108(02)00127-7

    Article  PubMed  CAS  Google Scholar 

  7. Kuwana T, Bouchier-Hayes L, Chipuk JE et al (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17:525–535. doi:10.1016/j.molcel.2005.02.003

    Article  PubMed  CAS  Google Scholar 

  8. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42. doi:10.1016/j.cell.2007.12.018

    Article  PubMed  CAS  Google Scholar 

  9. Bakhshi A, Jensen JP, Goldman P et al (1985) Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 41:899–906. doi:10.1016/S0092-8674(85)80070-2

    Article  PubMed  CAS  Google Scholar 

  10. Tsujimoto Y, Yunis J, Onorato-Showe L, Erikson J, Nowell PC, Croce CM (1984) Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation. Science (NY) 224:1403–1406

    CAS  Google Scholar 

  11. McDonnell TJ, Korsmeyer SJ (1991) Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14;18). Nature 349:254–256. doi:10.1038/349254a0

    Article  PubMed  CAS  Google Scholar 

  12. Egle A, Harris AW, Bath ML, O’Reilly L, Cory S (2004) VavP-Bcl2 transgenic mice develop follicular lymphoma preceded by germinal center hyperplasia. Blood 103:2276–2283. doi:10.1182/blood-2003-07-2469

    Article  PubMed  CAS  Google Scholar 

  13. Kumar A, Ta D, Henderson D et al (1999) bcl2 and v-abl oncogenes cooperate to immortalize murine B cells that secrete antigen specific antibodies. Immunol Lett 65:153–159. doi:10.1016/S0165-2478(98)00085-6

    Article  PubMed  CAS  Google Scholar 

  14. Acton D, Domen J, Jacobs H, Vlaar M, Korsmeyer S, Berns A (1992) Collaboration of PIM-1 and BCL-2 in lymphomagenesis. Curr Top Microbiol Immunol 182:293–298

    PubMed  CAS  Google Scholar 

  15. Strasser A, Harris AW, Bath ML, Cory S (1990) Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 348:331–333. doi:10.1038/348331a0

    Article  PubMed  CAS  Google Scholar 

  16. Swanson PJ, Kuslak SL, Fang W et al (2004) Fatal acute lymphoblastic leukemia in mice transgenic for B cell-restricted bcl-xL and c-myc. J Immunol 172:6684–6691

    PubMed  CAS  Google Scholar 

  17. Naik P, Karrim J, Hanahan D (1996) The rise and fall of apoptosis during multistage tumorigenesis: down-modulation contributes to tumor progression from angiogenic progenitors. Genes Dev 10:2105–2116. doi:10.1101/gad.10.17.2105

    Article  PubMed  CAS  Google Scholar 

  18. Pelengaris S, Khan M, Evan GI (2002) Suppression of Myc-induced apoptosis in β cells exposes multiple oncogenic properties of myc and triggers carcinogenic progression. Cell 109:321–334. doi:10.1016/S0092-8674(02)00738-9

    Article  PubMed  CAS  Google Scholar 

  19. Pena JC, Rudin CM, Thompson CBA (1998) Bcl-xL transgene promotes malignant conversion of chemically initiated skin papillomas. Cancer Res 58:2111–2116

    PubMed  CAS  Google Scholar 

  20. Zhou P, Levy NB, Xie H et al (2001) MCL1 transgenic mice exhibit a high incidence of B-cell lymphoma manifested as a spectrum of histologic subtypes. Blood 97:3902–3909. doi:10.1182/blood.V97.12.3902

    Article  PubMed  CAS  Google Scholar 

  21. Nieborowska-Skorska M, Hoser G, Kossev P, Wasik MA, Skorski T (2002) Complementary functions of the antiapoptotic protein A1 and serine/threonine kinase pim-1 in the BCR/ABL-mediated leukemogenesis. Blood 99:4531–4539. doi:10.1182/blood.V99.12.4531

    Article  PubMed  CAS  Google Scholar 

  22. D’Sa-Eipper C, Subramanian T, Chinnadurai G (1996) bfl-1, a bcl-2 homologue, suppresses p53-induced apoptosis and exhibits potent cooperative transforming activity. Cancer Res 56:3879–3882

    PubMed  CAS  Google Scholar 

  23. Chuang PI, Morefield S, Liu CY, Chen S, Harlan JM, Willerford DM (2002) Perturbation of B-cell development in mice overexpressing the Bcl-2 homolog A1. Blood 99:3350–3359. doi:10.1182/blood.V99.9.3350

    Article  PubMed  CAS  Google Scholar 

  24. Binder C, Marx D, Overhoff R, Binder L, Schauer A, Hiddemann W (1995) Bcl-2 protein expression in breast cancer in relation to established prognostic factors and other clinicopathological variables. Ann Oncol 6:1005–1010

    PubMed  CAS  Google Scholar 

  25. Joensuu H, Pylkkanen L, Toikkanen S (1994) Bcl-2 protein expression and long-term survival in breast cancer. Am J Pathol 145:1191–1198

    PubMed  CAS  Google Scholar 

  26. Lee KH, Im SA, Oh DY et al (2007) Prognostic significance of bcl-2 expression in stage III breast cancer patients who had received doxorubicin and cyclophosphamide followed by paclitaxel as adjuvant chemotherapy. BMC Cancer 7:63. doi:10.1186/1471-2407-7-63

    Article  PubMed  CAS  Google Scholar 

  27. Inada T, Kikuyama S, Ichikawa A, Igarashi S, Ogata Y (1998) Bcl-2 expression as a prognostic factor of survival of gastric carcinoma. Anticancer Res 18:2003–2010

    PubMed  CAS  Google Scholar 

  28. Schmitt CA, Fridman JS, Yang M, Baranov E, Hoffman RM, Lowe SW (2002) Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1:289–298. doi:10.1016/S1535-6108(02)00047-8

    Article  PubMed  CAS  Google Scholar 

  29. Gurova KV, Gudkov AV (2003) Paradoxical role of apoptosis in tumor progression. J Cell Biochem 88:128–137. doi:10.1002/jcb.10382

    Article  PubMed  CAS  Google Scholar 

  30. Vail ME, Pierce RH, Fausto N (2001) Bcl-2 delays and alters hepatic carcinogenesis induced by transforming growth factor alpha. Cancer Res 61:594–601

    PubMed  CAS  Google Scholar 

  31. de La Coste A, Mignon A, Fabre M et al (1999) Paradoxical inhibition of c-myc-induced carcinogenesis by Bcl-2 in transgenic mice. Cancer Res 59:5017–5022

    PubMed  Google Scholar 

  32. Lindsten T, Ross AJ, King A et al (2000) The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues. Mol Cell 6:1389–1399. doi:10.1016/S1097-2765(00)00136-2

    Article  PubMed  CAS  Google Scholar 

  33. Zhai D, Jin C, Huang Z, Satterthwait AC, Reed JC (2008) Differential regulation of Bax and Bak by anti-apoptotic Bcl-2 family proteins Bcl-B and Mcl-1. J Biol Chem 283:9580–9586. doi:10.1074/jbc.M708426200

    Article  PubMed  CAS  Google Scholar 

  34. Dansen TB, Whitfield J, Rostker F, Brown-Swigart L, Evan GI (2006) Specific requirement for Bax, not Bak, in Myc-induced apoptosis and tumor suppression in vivo. J Biol Chem 281:10890–10895. doi:10.1074/jbc.M513655200

    Article  PubMed  CAS  Google Scholar 

  35. Juin P, Hunt A, Littlewood T et al (2002) c-Myc functionally cooperates with Bax to induce apoptosis. Mol Cell Biol 22:6158–6169. doi:10.1128/MCB.22.17.6158-6169.2002

    Article  PubMed  CAS  Google Scholar 

  36. Gillissen B, Essmann F, Hemmati PG et al (2007) Mcl-1 determines the Bax dependency of Nbk/Bik-induced apoptosis. J Cell Biol 179:701–715. doi:10.1083/jcb.200703040

    Article  PubMed  CAS  Google Scholar 

  37. Yu J, Wang Z, Kinzler KW, Vogelstein B, Zhang L (2003) PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci USA 100:1931–1936. doi:10.1073/pnas.2627984100

    Article  PubMed  CAS  Google Scholar 

  38. Knudson CM, Johnson GM, Lin Y, Korsmeyer SJ (2001) Bax accelerates tumorigenesis in p53-deficient mice. Cancer Res 61:659–665

    PubMed  CAS  Google Scholar 

  39. Yin CY, Knudson CM, Korsmeyer SJ, Van Dyke T (1997) Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 385:637–640. doi:10.1038/385637a0

    Article  PubMed  CAS  Google Scholar 

  40. Shibata MA, Liu ML, Knudson MC et al (1999) Haploid loss of bax leads to accelerated mammary tumor development in C3(1)/SV40-TAg transgenic mice: reduction in protective apoptotic response at the preneoplastic stage. EMBO J 18:2692–2701. doi:10.1093/emboj/18.10.2692

    Article  PubMed  CAS  Google Scholar 

  41. Eischen CM, Roussel MF, Korsmeyer SJ, Cleveland JL (2001) Bax loss impairs Myc-induced apoptosis and circumvents the selection of p53 mutations during Myc-mediated lymphomagenesis. Mol Cell Biol 21:7653–7662. doi:10.1128/MCB.21.22.7653-7662.2001

    Article  PubMed  CAS  Google Scholar 

  42. Eischen CM, Rehg JE, Korsmeyer SJ, Cleveland JL (2002) Loss of Bax alters tumor spectrum and tumor numbers in ARF-deficient mice. Cancer Res 62:2184–2191

    PubMed  CAS  Google Scholar 

  43. Yamamoto H, Sawai H, Perucho M (1997) Frameshift somatic mutations in gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Res 57:4420–4426

    PubMed  CAS  Google Scholar 

  44. Rampino N, Yamamoto H, Ionov Y et al (1997) Somatic frameshift mutations in the bax gene in colon cancers of the microsatellite mutator phenotype. Science (NY) 275:967–969

    CAS  Google Scholar 

  45. Ionov Y, Yamamoto H, Krajewski S, Reed JC, Perucho M (2000) Mutational inactivation of the proapoptotic gene BAX confers selective advantage during tumor clonal evolution. Proc Natl Acad Sci USA 97:10872–10877. doi:10.1073/pnas.190210897

    Article  PubMed  CAS  Google Scholar 

  46. Labi V, Erlacher M, Kiessling S, Villunger A (2006) BH3-only proteins in cell death initiation, malignant disease and anticancer therapy. Cell Death Differ 13:1325–1338. doi:10.1038/sj.cdd.4401940

    Article  PubMed  CAS  Google Scholar 

  47. Bouillet P, Metcalf D, Huang DCS et al (1999) Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science (NY) 286:1735–1738

    CAS  Google Scholar 

  48. Erlacher M, Labi V, Manzl C et al (2006) Puma cooperates with Bim, the rate-limiting BH3-only protein in cell death during lymphocyte development, in apoptosis induction. J Exp Med 203:2939–2951. doi:10.1084/jem.20061552

    Article  PubMed  CAS  Google Scholar 

  49. Egle A, Harris AW, Bouillet P, Cory S (2004) Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc Natl Acad Sci USA 101:6164–6169. doi:10.1073/pnas.0401471101

    Article  PubMed  CAS  Google Scholar 

  50. Hemann MT, Bric A, Teruya-Feldstein J et al (2005) Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 436:807–811. doi:10.1038/nature03845

    Article  PubMed  CAS  Google Scholar 

  51. Ley R, Ewings KE, Hadfield K, Cook SJ (2005) Regulatory phosphorylation of Bim: sorting out the ERK from the JNK. Cell Death Differ 12:1008–1014. doi:10.1038/sj.cdd.4401688

    Article  PubMed  CAS  Google Scholar 

  52. Cragg, Kuroda J, Puthalakath H, Huang DC, Strasser A (2007) Gefitinib-induced killing of NSCLC cell lines expressing mutant EGFR requires BIM and can be enhanced by BH3 mimetics. PLoS Med 4:1681–1689. doi:10.1371/journal.pmed.0040316 discussion 1690

    Article  PubMed  CAS  Google Scholar 

  53. Kuroda J, Puthalakath H, Cragg MS et al (2006) Bim and Bad mediate imatinib-induced killing of Bcr/Abl+ leukemic cells, and resistance due to their loss is overcome by a BH3 mimetic. Proc Natl Acad Sci USA 103:14907–14912. doi:10.1073/pnas.0606176103

    Article  PubMed  CAS  Google Scholar 

  54. Tan TT, Degenhardt K, Nelson DA et al (2005) Key roles of BIM-driven apoptosis in epithelial tumors and rational chemotherapy. Cancer Cell 7:227–238. doi:10.1016/j.ccr.2005.02.008

    Article  PubMed  CAS  Google Scholar 

  55. Hubner A, Barrett T, Flavell RA, Davis RJ (2008) Multisite phosphorylation regulates Bim stability and apoptotic activity. Mol Cell 30:415–425. doi:10.1016/j.molcel.2008.03.025

    Article  PubMed  CAS  Google Scholar 

  56. Mestre-Escorihuela C, Rubio-Moscardo F, Richter JA et al (2007) Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas. Blood 109:271–280. doi:10.1182/blood-2006-06-026500

    Article  PubMed  CAS  Google Scholar 

  57. Tagawa H, Karnan S, Suzuki R et al (2005) Genome-wide array-based CGH for mantle cell lymphoma: identification of homozygous deletions of the proapoptotic gene BIM. Oncogene 24:1348–1358. doi:10.1038/sj.onc.1208300

    Article  PubMed  CAS  Google Scholar 

  58. Dai DL, Wang Y, Liu M, Martinka M, Li G (2008) Bim expression is reduced in human cutaneous melanomas. J Invest Dermatol 128:403–407. doi:10.1038/sj.jid.5700989

    Article  PubMed  CAS  Google Scholar 

  59. Karst AM, Dai DL, Martinka M, Li G (2005) PUMA expression is significantly reduced in human cutaneous melanomas. Oncogene 24:1111–1116. doi:10.1038/sj.onc.1208374

    Article  PubMed  CAS  Google Scholar 

  60. Zantl N, Weirich G, Zall H et al (2007) Frequent loss of expression of the pro-apoptotic protein Bim in renal cell carcinoma: evidence for contribution to apoptosis resistance. Oncogene 26:7038–7048. doi:10.1038/sj.onc.1210510

    Article  PubMed  CAS  Google Scholar 

  61. Sinicrope FA, Rego RL, Okumura K et al (2008) Prognostic impact of bim, puma, and noxa expression in human colon carcinomas. Clin Cancer Res 14:5810–5818. doi:10.1158/1078-0432.CCR-07-5202

    Article  PubMed  CAS  Google Scholar 

  62. Labi V, Erlacher M, Kiessling S et al (2008) Loss of the BH3-only protein Bmf impairs B cell homeostasis and accelerates gamma irradiation-induced thymic lymphoma development. J Exp Med 205:641–655. doi:10.1084/jem.20071658

    Article  PubMed  CAS  Google Scholar 

  63. Wick W, Petersen I, Schmutzler RK et al (1996) Evidence for a novel tumor suppressor gene on chromosome 15 associated with progression to a metastatic stage in breast cancer. Oncogene 12:973–978

    PubMed  CAS  Google Scholar 

  64. Schmutte C, Tombline G, Rhiem K et al (1999) Characterization of the human Rad51 genomic locus and examination of tumors with 15q14–15 loss of heterozygosity (LOH). Cancer Res 59:4564–4569

    PubMed  CAS  Google Scholar 

  65. Schmelzle T, Mailleux AA, Overholtzer M et al (2007) Functional role and oncogene-regulated expression of the BH3-only factor Bmf in mammary epithelial anoikis and morphogenesis. Proc Natl Acad Sci USA 104:3787–3792. doi:10.1073/pnas.0700115104

    Article  PubMed  CAS  Google Scholar 

  66. Jeffers JR, Parganas E, Lee Y et al (2003) Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4:321–328. doi:10.1016/S1535-6108(03)00244-7

    Article  PubMed  CAS  Google Scholar 

  67. Villunger A, Michalak EM, Coultas L et al (2003) p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science (NY) 302:1036–1038

    CAS  Google Scholar 

  68. Hemann MT, Zilfou JT, Zhao Z, Burgess DJ, Hannon GJ, Lowe SW (2004) Suppression of tumorigenesis by the p53 target PUMA. Proc Natl Acad Sci USA 101:9333–9338. doi:10.1073/pnas.0403286101

    Article  PubMed  CAS  Google Scholar 

  69. Garrison SP, Jeffers JR, Yang C et al (2008) Selection against PUMA gene expression in Myc-driven B-cell lymphomagenesis. Mol Cell Biol 28:5391–5402. doi:10.1128/MCB.00907-07

    Article  PubMed  CAS  Google Scholar 

  70. Yong WH, Ueki K, Chou D et al (1995) Cloning of a highly conserved human protein serine-threonine phosphatase gene from the glioma candidate region on chromosome 19q13.3. Genomics 29:533–536. doi:10.1006/geno.1995.9972

    Article  PubMed  CAS  Google Scholar 

  71. Mora J, Cheung NK, Chen L, Qin J, Gerald W (2001) Loss of heterozygosity at 19q13.3 is associated with locally aggressive neuroblastoma. Clin Cancer Res 7:1358–1361

    PubMed  CAS  Google Scholar 

  72. Shimazaki C, Inaba T, Nakagawa M (2000) B-cell lymphoma-associated hemophagocytic syndrome. Leuk Lymphoma 38:121–130

    PubMed  CAS  Google Scholar 

  73. Hoque MO, Begum S, Sommer M et al (2003) PUMA in head and neck cancer. Cancer Lett 199:75–81. doi:10.1016/S0304-3835(03)00344-6

    Article  PubMed  CAS  Google Scholar 

  74. Oda E, Ohki R, Murasawa H et al (2000) Noxa, a BH3-only member of the bcl-2 family and candidate mediator of p53-induced apoptosis. Science (NY) 288:1053–1058

    CAS  Google Scholar 

  75. Shibue T, Takeda K, Oda E et al (2003) Integral role of Noxa in p53-mediated apoptotic response. Genes Dev 17:2233–2238. doi:10.1101/gad.1103603

    Article  PubMed  CAS  Google Scholar 

  76. Michalak EM, Villunger A, Adams JM, Strasser A (2008) In several cell types tumour suppressor p53 induces apoptosis largely via Puma but Noxa can contribute. Cell Death Differ 15:1019–1029

    Article  PubMed  CAS  Google Scholar 

  77. Lee SH, Soung YH, Lee JW et al (2003) Mutational analysis of Noxa gene in human cancers. APMIS 111:599–604. doi:10.1034/j.1600-0463.2003.1110602.x

    Article  PubMed  CAS  Google Scholar 

  78. Diallo JS, Aldejmah A, Mouhim AF et al (2007) NOXA and PUMA expression add to clinical markers in predicting biochemical recurrence of prostate cancer patients in a survival tree model. Clin Cancer Res 13:7044–7052. doi:10.1158/1078-0432.CCR-07-1224

    Article  PubMed  CAS  Google Scholar 

  79. Zinkel SS, Ong CC, Ferguson DO et al (2003) Proapoptotic BID is required for myeloid homeostasis and tumor suppression. Genes Dev 17:229–239. doi:10.1101/gad.1045603

    Article  PubMed  CAS  Google Scholar 

  80. Lee JH, Soung YH, Lee JW et al (2004) Inactivating mutation of the pro-apoptotic gene BID in gastric cancer. J Pathol 202:439–445. doi:10.1002/path.1532

    Article  PubMed  CAS  Google Scholar 

  81. Krajewska M, Zapata JM, Meinhold-Heerlein I et al (2002) Expression of Bcl-2 family member Bid in normal and malignant tissues. Neoplasia 4:129–140. doi:10.1038/sj.neo.7900222

    Article  PubMed  CAS  Google Scholar 

  82. Green MM, Hutchison GJ, Valentine HR et al (2005) Expression of the proapoptotic protein Bid is an adverse prognostic factor for radiotherapy outcome in carcinoma of the cervix. Br J Cancer 92:449–458

    PubMed  CAS  Google Scholar 

  83. Hayakawa J, Ohmichi M, Kurachi H et al (2000) Inhibition of BAD phosphorylation either at serine 112 via extracellular signal-regulated protein kinase cascade or at serine 136 via Akt cascade sensitizes human ovarian cancer cells to cisplatin. Cancer Res 60:5988–5994

    PubMed  CAS  Google Scholar 

  84. Wendel HG, De Stanchina E, Fridman JS et al (2004) Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428:332–337. doi:10.1038/nature02369

    Article  PubMed  CAS  Google Scholar 

  85. Ranger AM, Zha J, Harada H et al (2003) Bad-deficient mice develop diffuse large B cell lymphoma. Proc Natl Acad Sci USA 100:9324–9329. doi:10.1073/pnas.1533446100

    Article  PubMed  Google Scholar 

  86. Lee JW, Soung YH, Kim SY et al (2004) Inactivating mutations of proapoptotic Bad gene in human colon cancers. Carcinogenesis 25:1371–1376. doi:10.1093/carcin/bgh145

    Article  PubMed  CAS  Google Scholar 

  87. Teo K, Gemmell L, Mukherjee R, Traynor P, Edwards J (2007) Bad expression influences time to androgen escape in prostate cancer. BJU Int 100:691–696. doi:10.1111/j.1464-410X.2007.07001.x

    Article  PubMed  Google Scholar 

  88. Cannings E, Kirkegaard T, Tovey SM, Dunne B, Cooke TG, Bartlett JM (2007) Bad expression predicts outcome in patients treated with tamoxifen. Breast Cancer Res Treat 102:173–179. doi:10.1007/s10549-006-9323-8

    Article  PubMed  CAS  Google Scholar 

  89. Sturm I, Stephan C, Gillissen B, Siebert R, Janz M, Radetzki S, Jung K, Loening S, Dörken B, Daniel PT (2006) Loss of the tissue-specific proapoptoptic BH3-only protein Nbk/Bik is a unifying feature of renal cell carcinoma. Cell Death Differ 13:619–627

    Article  PubMed  CAS  Google Scholar 

  90. Arena V, Martini M, Luongo M, Capelli A, Larocca LM (2003) Mutations of the BIK gene in human peripheral B-cell lymphomas. Genes Chromosomes Cancer 38:91–96. doi:10.1002/gcc.10245

    Article  PubMed  CAS  Google Scholar 

  91. Nakamura M, Ishida E, Shimada K, Nakase H, Sakaki T, Konishi N (2006) Defective expression of HRK is associated with promoter methylation in primary central nervous system lymphomas. Oncology 70:212–221. doi:10.1159/000094322

    Article  PubMed  CAS  Google Scholar 

  92. Higuchi T, Nakamura M, Shimada K, Ishida E, Hirao K, Konishi N (2008) HRK inactivation associated with promoter methylation and LOH in prostate cancer. Prostate 68:105–113. doi:10.1002/pros.20600

    Article  PubMed  CAS  Google Scholar 

  93. Nakamura M, Ishida E, Shimada K, Nakase H, Sakaki T, Konishi N (2005) Frequent HRK inactivation associated with low apoptotic index in secondary glioblastomas. Acta Neuropathol (Berl) 110:402–410

    Article  CAS  Google Scholar 

  94. Obata T, Toyota M, Satoh A et al (2003) Identification of HRK as a target of epigenetic inactivation in colorectal and gastric cancer. Clin Cancer Res 9:6410–6418

    PubMed  CAS  Google Scholar 

  95. Kuroda J, Kimura S, Strasser A et al (2007) Apoptosis-based dual molecular targeting by INNO-406, a second-generation Bcr-Abl inhibitor, and ABT-737, an inhibitor of antiapoptotic Bcl-2 proteins, against Bcr-Abl-positive leukemia. Cell Death Differ 14:1667–1677. doi:10.1038/sj.cdd.4402168

    Article  PubMed  CAS  Google Scholar 

  96. Costa DB, Halmos B, Kumar A et al (2007) BIM mediates EGFR tyrosine kinase inhibitor-induced apoptosis in lung cancers with oncogenic EGFR mutations. PLoS Med 4:1669–1679. doi:10.1371/journal.pmed.0040315 discussion 1680

    Article  PubMed  CAS  Google Scholar 

  97. Gong Y, Somwar R, Politi K et al (2007) Induction of BIM is essential for apoptosis triggered by EGFR kinase inhibitors in mutant EGFR-dependent lung adenocarcinomas. PLoS Med 4:e294. doi:10.1371/journal.pmed.0040294

    Article  PubMed  CAS  Google Scholar 

  98. She QB, Solit DB, Ye Q, O’Reilly KE, Lobo J, Rosen N (2005) The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer Cell 8:287–297. doi:10.1016/j.ccr.2005.09.006

    Article  PubMed  CAS  Google Scholar 

  99. Inoue S, Riley J, Gant TW, Dyer MJ, Cohen GM (2007) Apoptosis induced by histone deacetylase inhibitors in leukemic cells is mediated by Bim and Noxa. Leukemia 21:1773–1782. doi:10.1038/sj.leu.2404760

    Article  PubMed  CAS  Google Scholar 

  100. Ploner C, Rainer J, Niederegger H et al (2007) The BCL2 rheostat in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia. Leukemia 22:370–377

    Article  PubMed  CAS  Google Scholar 

  101. Morales AA, Gutman D, Lee KP, Boise LH (2008) BH3-only proteins Noxa, Bmf, and Bim are necessary for arsenic trioxide-induced cell death in myeloma. Blood 111:5152–5162. doi:10.1182/blood-2007-10-116889

    Article  PubMed  CAS  Google Scholar 

  102. Ramjaun AR, Tomlinson S, Eddaoudi A, Downward J (2007) Upregulation of two BH3-only proteins, Bmf and Bim, during TGF beta-induced apoptosis. Oncogene 26:970–981. doi:10.1038/sj.onc.1209852

    Article  PubMed  CAS  Google Scholar 

  103. Romano S, Mallardo M, Chiurazzi F et al (2008) The effect of FK506 on transforming growth factor beta signaling and apoptosis in chronic lymphocytic leukemia B cells. Haematologica 93:1039–1048. doi:10.3324/haematol.12402

    Article  PubMed  CAS  Google Scholar 

  104. Zhang Y, Adachi M, Kawamura R, Imai K (2006) Bmf is a possible mediator in histone deacetylase inhibitors FK228 and CBHA-induced apoptosis. Cell Death Differ 13:125–140

    CAS  Google Scholar 

  105. Zhang Y, Adachi M, Kawamura R et al (2006) Bmf contributes to histone deacetylase inhibitor-mediated enhancing effects on apoptosis after ionizing radiation. Apoptosis 11:1349–1357

    Article  PubMed  CAS  Google Scholar 

  106. Fernandez Y, Verhaegen M, Miller TP et al (2005) Differential regulation of noxa in normal melanocytes and melanoma cells by proteasome inhibition: therapeutic implications. Cancer Res 65:6294–6304. doi:10.1158/0008-5472.CAN-05-0686

    Article  PubMed  CAS  Google Scholar 

  107. Qin JZ, Ziffra J, Stennett L et al (2005) Proteasome inhibitors trigger NOXA-mediated apoptosis in melanoma and myeloma cells. Cancer Res 65:6282–6293. doi:10.1158/0008-5472.CAN-05-0676

    Article  PubMed  CAS  Google Scholar 

  108. Nikiforov MA, Riblett M, Tang WH et al (2007) Tumor cell-selective regulation of NOXA by c-MYC in response to proteasome inhibition. Proc Natl Acad Sci USA 104:19488–19493. doi:10.1073/pnas.0708380104

    Article  PubMed  CAS  Google Scholar 

  109. Qin JZ, Stennett L, Bacon P et al (2004) p53-independent NOXA induction overcomes apoptotic resistance of malignant melanomas. Mol Cancer Ther 3:895–902

    PubMed  CAS  Google Scholar 

  110. Nefedova Y, Sullivan DM, Bolick SC, Dalton WS, Gabrilovich DI (2008) Inhibition of Notch signaling induces apoptosis of myeloma cells and enhances sensitivity to chemotherapy. Blood 111:2220–2229. doi:10.1182/blood-2007-07-102632

    Article  PubMed  CAS  Google Scholar 

  111. Dias N, Stein CA (2002) Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther 1:347–355

    PubMed  CAS  Google Scholar 

  112. Vidal L, Blagden S, Attard G, de Bono J (2005) Making sense of antisense. Eur J Cancer 41:2812–2818. doi:10.1016/j.ejca.2005.06.029

    Article  PubMed  CAS  Google Scholar 

  113. Kim R, Emi M, Matsuura K, Tanabe K (2007) Antisense and nonantisense effects of antisense Bcl-2 on multiple roles of Bcl-2 as a chemosensitizer in cancer therapy. Cancer Gene Ther 14:1–11. doi:10.1038/sj.cgt.7700986

    Article  PubMed  CAS  Google Scholar 

  114. Pellecchia M, Reed JC (2004) Inhibition of anti-apoptotic Bcl-2 family proteins by natural polyphenols: new avenues for cancer chemoprevention and chemotherapy. Curr Pharm Des 10:1387–1398. doi:10.2174/1381612043384880

    Article  PubMed  CAS  Google Scholar 

  115. Chan SL, Lee MC, Tan KO et al (2003) Identification of chelerythrine as an inhibitor of BclXL function. J Biol Chem 278:20453–20456. doi:10.1074/jbc.C300138200

    Article  PubMed  CAS  Google Scholar 

  116. Becattini B, Kitada S, Leone M et al (2004) Rational design and real time, in-cell detection of the proapoptotic activity of a novel compound targeting Bcl-X(L). Chem Biol 11:389–395. doi:10.1016/j.chembiol.2004.02.020

    Article  PubMed  CAS  Google Scholar 

  117. Tzung SP, Kim KM, Basanez G et al (2001) Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nat Cell Biol 3:183–191. doi:10.1038/35055095

    Article  PubMed  CAS  Google Scholar 

  118. Leone M, Zhai D, Sareth S, Kitada S, Reed JC, Pellecchia M (2003) Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins. Cancer Res 63:8118–8121

    PubMed  CAS  Google Scholar 

  119. Wang JL, Liu D, Zhang ZJ et al (2000) Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci USA 97:7124–7129. doi:10.1073/pnas.97.13.7124

    Article  PubMed  CAS  Google Scholar 

  120. Degterev A, Lugovskoy A, Cardone M et al (2001) Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. Nat Cell Biol 3:173–182. doi:10.1038/35055085

    Article  PubMed  CAS  Google Scholar 

  121. van Delft MF, Wei AH, Mason KD et al (2006) The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 10:389–399. doi:10.1016/j.ccr.2006.08.027

    Article  PubMed  CAS  Google Scholar 

  122. Wang G, Nikolovska-Coleska Z, Yang CY et al (2006) Structure-based design of potent small-molecule inhibitors of anti-apoptotic Bcl-2 proteins. J Med Chem 49:6139–6142. doi:10.1021/jm060460o

    Article  PubMed  CAS  Google Scholar 

  123. Verhaegen M, Bauer JA, Martin de la Vega C et al (2006) A novel BH3 mimetic reveals a mitogen-activated protein kinase-dependent mechanism of melanoma cell death controlled by p53 and reactive oxygen species. Cancer Res 66:11348–11359. doi:10.1158/0008-5472.CAN-06-1748

    Article  PubMed  CAS  Google Scholar 

  124. Nguyen M, Marcellus RC, Roulston A et al (2007) Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci USA 104:19512–19517. doi:10.1073/pnas.0709443104

    Article  PubMed  CAS  Google Scholar 

  125. Konopleva M, Watt J, Contractor R et al (2008) Mechanisms of antileukemic activity of the novel Bcl-2 homology domain-3 mimetic GX15-070 (obatoclax). Cancer Res 68:3413–3420. doi:10.1158/0008-5472.CAN-07-1919

    Article  PubMed  CAS  Google Scholar 

  126. Campas C, Cosialls AM, Barragan M et al (2006) Bcl-2 inhibitors induce apoptosis in chronic lymphocytic leukemia cells. Exp Hematol 34:1663–1669. doi:10.1016/j.exphem.2006.07.008

    Article  PubMed  CAS  Google Scholar 

  127. Mott JL, Bronk SF, Mesa RA, Kaufmann SH, Gores GJ (2008) BH3-only protein mimetic obatoclax sensitizes cholangiocarcinoma cells to Apo2L/TRAIL-induced apoptosis. Mol Cancer Ther 7:2339–2347. doi:10.1158/1535-7163.MCT-08-0285

    Article  PubMed  CAS  Google Scholar 

  128. Perez-Galan P, Roue G, Villamor N, Campo E, Colomer D (2007) The BH3-mimetic GX15-070 synergizes with bortezomib in mantle cell lymphoma by enhancing Noxa-mediated activation of Bak. Blood 109:4441–4449. doi:10.1182/blood-2006-07-034173

    Article  PubMed  CAS  Google Scholar 

  129. Witters LM, Witkoski A, Planas-Silva MD, Berger M, Viallet J, Lipton A (2007) Synergistic inhibition of breast cancer cell lines with a dual inhibitor of EGFR-HER-2/neu and a Bcl-2 inhibitor. Oncol Rep 17:465–469

    PubMed  CAS  Google Scholar 

  130. Li J, Viallet J, Haura EB (2008) A small molecule pan-Bcl-2 family inhibitor, GX15-070, induces apoptosis and enhances cisplatin-induced apoptosis in non-small cell lung cancer cells. Cancer Chemother Pharmacol 61:525–534. doi:10.1007/s00280-007-0499-3

    Article  PubMed  CAS  Google Scholar 

  131. Labi V, Grespi F, Baumgartner F, Villunger A (2008) Targeting the Bcl-2-regulated apoptosis pathway by BH3 mimetics: a breakthrough in anticancer therapy? Cell Death Differ 15:977–987

    Article  PubMed  CAS  Google Scholar 

  132. Oltersdorf T, Elmore SW, Shoemaker AR et al (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–681. doi:10.1038/nature03579

    Article  PubMed  CAS  Google Scholar 

  133. Del Gaizo Moore V, Brown JR, Certo M, Love TM, Novina CD, Letai A (2007) Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J Clin Invest 117:112–121. doi:10.1172/JCI28281

    Article  PubMed  CAS  Google Scholar 

  134. Konopleva M, Contractor R, Tsao T et al (2006) Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 10:375–388. doi:10.1016/j.ccr.2006.10.006

    Article  PubMed  CAS  Google Scholar 

  135. Tse C, Shoemaker AR, Adickes J et al (2008) ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 68:3421–3428. doi:10.1158/0008-5472.CAN-07-5836

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work in our laboratories is supported by fellowships and grants from the Austrian Science Fund (FWF): Y212-B13 START, the Doctoral College MCBO, the SFB021, the Association for International Cancer Research (AICR), EU-FP7 (ApopTrain) and the Tyrolean Science Fund (TWF). We apologize to the many scientists in this field whose excellent research was not cited but was only referred to indirectly through reviews. The authors have no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anna Frenzel or Andreas Villunger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frenzel, A., Grespi, F., Chmelewskij, W. et al. Bcl2 family proteins in carcinogenesis and the treatment of cancer. Apoptosis 14, 584–596 (2009). https://doi.org/10.1007/s10495-008-0300-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0300-z

Keywords

Navigation