Skip to main content
Log in

Frequent HRK inactivation associated with low apoptotic index in secondary glioblastomas

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

To detect and identify the genetic alterations and methylation status of the HRK gene in human glioblastomas, we analyzed a cohort of astrocytic tumors for hypermethylation, loss of heterozygosity on 12q13.1, and gene expression. Our study examined a series of 36 diffuse low-grade astrocytomas, 32 anaplastic astrocytomas, 64 primary glioblastomas, and 28 secondary glioblastomas that had evolved from either 24 low-grade diffuse astrocytomas or 4 anaplastic astrocytomas. The region around the HRK transcription start site was methylated in 19% of diffuse astrocytomas, in 22% of anaplastic astrocytomas, in 27% of primary glioblastomas, and in 43% of secondary glioblastomas. HRK expression was significantly reduced in 61% of secondary glioblastomas as compared to other types of tumors, and aberrant methylation was closely associated with loss of expression. Reverse transcription-PCR analysis also demonstrated a clear agreement between reduced HRK protein levels and low or absent HRK transcripts. Lack of HRK immunoreactivity was significantly correlated with a low apoptotic index, whereas a strong association between methylation status and apoptosis was found only in secondary glioblastomas. Abnormal methylation of HRK was detected in astrocytic tumors concurrent with methylation of multiple genes, including p16INK4a and p14ARF. Interestingly, these epigenetic changes in secondary glioblastoma were further associated with wild-type p53. Our findings suggest that HRK is inactivated mainly by aberrant DNA methylation in astrocytic tumors and that reduced HRK expression contributes to the loss of apoptotic control in high-grade tumors. Reduced expression of HRK may serve as one important molecular mechanism in progression to secondary glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG (2001) Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet 10:687–692

    Article  PubMed  Google Scholar 

  2. Chittenden T (2002) BH3 domains: intracellular death-ligands critical for initiating apoptosis. Cancer Cell 2:165–166

    Article  PubMed  Google Scholar 

  3. Chittenden T, Flemington C, Houghton AB, Ebb RG, Gallo GJ, Elangovan B, Chinnadurai G, Lutz RJ (1995) A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions. EMBO J 14:5589–5596

    PubMed  Google Scholar 

  4. Downward J (1999) How BAD phosphorylation is good for survival. Nat Cell Biol 1:E33–35

    Article  PubMed  Google Scholar 

  5. Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21:5400–5413

    Article  PubMed  Google Scholar 

  6. Esteller M, Tortola S, Toyota M, Capella G, Peinado MA, Baylin SB, Herman JG (2000) Hypermethylation-associated inactivation of p14ARF is independent of p16INK4a methylation and p53 mutational status. Cancer Res 60:129–133

    PubMed  Google Scholar 

  7. Evan GI,Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411:342–348

    PubMed  Google Scholar 

  8. Fujisawa H, Reis RM, Nakamura M, Colella S, Yonekawa Y, Kleihues P, Ohgaki H (2000) Loss of heterozygosity on chromosome 10 is more extensive in primary (de novo) than in secondary glioblastomas. Lab Invest 80:65–72

    PubMed  Google Scholar 

  9. Harris CA,Johnson EM Jr (2001) BH3-only Bcl-2 family members are coordinately regulated by the JNK pathway and require Bax to induce apoptosis in neurons. J Biol Chem 276:37754–37760

    PubMed  Google Scholar 

  10. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93:9821–9826

    Article  PubMed  Google Scholar 

  11. Imaizumi K, Tsuda M, Imai Y, Wanaka A, Takagi T, Tohyama M (1997) Molecular cloning of a novel polypeptide, DP5, induced during programmed neuronal death. J Biol Chem 272:18842–18848

    Article  PubMed  Google Scholar 

  12. Inohara N, Ding L, Chen S, Nunez G (1997) Harakiri, a novel regulator of cell death, encodes a protein that activates apoptosis and interacts selectively with survival-promoting proteins Bcl-2 and Bcl-X(L). EMBO J 16:1686–1694

    Article  PubMed  Google Scholar 

  13. Jiang Z, Zheng X, Rich KM (2003) Down-regulation of Bcl-2 and Bcl-xL expression with bispecific antisense treatment in glioblastoma cell lines induce cell death. J Neurochem 84:273–281

    Article  PubMed  Google Scholar 

  14. Kim HS, Woo DK, Bae SI, Kim YI, Kim WH (2001) Allelotype of the adenoma-carcinoma sequence of the stomach. Cancer Detect Prev 25:237–244

    PubMed  Google Scholar 

  15. Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC, Cavenee WK (2002) The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 61:215–225

    PubMed  Google Scholar 

  16. Lang FF, Miller DC, Koslow M, Newcomb EW (1994) Pathways leading to glioblastoma multiforme: a molecular analysis of genetic alterations in 65 astrocytic tumors. J Neurosurg 81:427–436

    PubMed  Google Scholar 

  17. Nakamura M, Yang F, Fujisawa H, Yonekawa Y, Kleihues P, Ohgaki H (2000) Loss of heterozygosity on chromosome 19 in secondary glioblastomas. J Neuropathol Exp Neurol 59:539–543

    PubMed  Google Scholar 

  18. Nakamura M, Watanabe T, Klangby U, Asker C, Wiman K, Yonekawa Y, Kleihues P, Ohgaki H (2001) p14ARF deletion and methylation in genetic pathways to glioblastomas. Brain Pathol 11:159–168

    PubMed  Google Scholar 

  19. Nakamura M, Watanabe T, Yonekawa Y, Kleihues P, Ohgaki H (2001) Promoter methylation of the DNA repair gene MGMT in astrocytomas is frequently associated with G:C → A:T mutations of the TP53 tumor suppressor gene. Carcinogenesis 22:1715–1719

    Article  PubMed  Google Scholar 

  20. Nakamura M, Yonekawa Y, Kleihues P, Ohgaki H (2001) Promoter hypermethylation of the RB1 gene in glioblastomas. Lab Invest 81:77–82

    PubMed  Google Scholar 

  21. Nakamura M, Kishi M, Sakaki T, Hashimoto H, Nakase H, Shimada K, Ishida E, Konishi N (2003) Novel tumor suppressor Loci on 6q22–23 in primary central nervous system lymphomas. Cancer Res 63:737–741

    PubMed  Google Scholar 

  22. Nakamura M, Ishida E, Shimada K, Kishi M, Nakase H, Sakaki T, Konishi N (2005) Frequent LOH on 22q12.3 and TIMP-3 inactivation occur in the progression to secondary glioblastomas. Lab Invest 85:165–175

    Article  PubMed  Google Scholar 

  23. Obata T, Toyota M, Satoh A, Sasaki Y, Ogi K, Akino K, Suzuki H, Murai M, Kikuchi T, Mita H, Itoh F, Issa JP, Tokino T, Imai K (2003) Identification of HRK as a target of epigenetic inactivation in colorectal and gastric cancer. Clin Cancer Res 9:6410–6418

    Google Scholar 

  24. Puthalakath H,Strasser A (2002) Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ 9:505–512

    Article  PubMed  Google Scholar 

  25. Reed JC (1995) Bcl-2: prevention of apoptosis as a mechanism of drug resistance. Hematol Oncol Clin North Am 9:451–473

    PubMed  Google Scholar 

  26. Sanz C, Benito A, Inohara N, Ekhterae D, Nunez G, Fernandez-Luna JL (2000) Specific and rapid induction of the proapoptotic protein Hrk after growth factor withdrawal in hematopoietic progenitor cells. Blood 95:2742–2747

    PubMed  Google Scholar 

  27. Sanz C, Horita M, Fernandez-Luna JL (2002) Fas signaling and blockade of Bcr-Abl kinase induce apoptotic Hrk protein via DREAM inhibition in human leukemia cells. Haematologica 87:903–907

    PubMed  Google Scholar 

  28. Sasaki Y, Morimoto I, Ishida S, Yamashita T, Imai K, Tokino T (2001) Adenovirus-mediated transfer of the p53 family genes, p73 and p51/p63 induces cell cycle arrest and apoptosis in colorectal cancer cell lines: potential application to gene therapy of colorectal cancer. Gene Ther 8:1401–1408

    Article  PubMed  Google Scholar 

  29. Tohma Y, Gratas C, Biernat W, Peraud A, Fukuda M, Yonekawa Y, Kleihues P, Ohgaki H (1998) PTEN (MMAC1) mutations are frequent in primary glioblastomas (de novo) but not in secondary glioblastomas. J Neuropathol Exp Neurol 57:684–689

    PubMed  Google Scholar 

  30. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP (1999) CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA 96:8681–8686

    Article  PubMed  Google Scholar 

  31. Von Deimling A, Ammon K von, Schoenfeld D, Wiestler OD, Seizinger BR, Louis DN (1993) Subsets of glioblastoma multiforme defined by molecular genetic analysis. Brain Pathol 3:19–26

    PubMed  Google Scholar 

  32. Von Deimling A, Fimmers R, Schmidt MC, Bender B, Fassbender F, Nagel J, Jahnke R, Kaskel P, Duerr EM, Koopmann J, et al (2000) Comprehensive allelotype and genetic anaysis of 466 human nervous system tumors. J Neuropathol Exp Neurol 59:544–558

    PubMed  Google Scholar 

  33. Watanabe K, Tachibana O, Sata K, Yonekawa Y, Kleihues P, Ohgaki H (1996) Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 6:217–223; discussion 223–214

    PubMed  Google Scholar 

  34. Watanabe T, Hirota Y, Arakawa Y, Fujisawa H, Tachibana O, Hasegawa M, Yamashita J, Hayashi Y (2003) Frequent LOH at chromosome 12q22–23 and Apaf-1 inactivation in glioblastoma. Brain Pathol 13:431–439

    PubMed  Google Scholar 

  35. Wistuba II, Tang M, Maitra A, Alvarez H, Troncoso P, Pimentel F, Gazdar AF (2001) Genome-wide allelotyping analysis reveals multiple sites of allelic loss in gallbladder carcinoma. Cancer Res 61:3795–3800

    PubMed  Google Scholar 

  36. Zhang L, Yu J, Park BH, Kinzler KW, Vogelstein B (2000) Role of BAX in the apoptotic response to anticancer agents. Science 290:989–992

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (no. 17590312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noboru Konishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, M., Ishida, E., Shimada, K. et al. Frequent HRK inactivation associated with low apoptotic index in secondary glioblastomas. Acta Neuropathol 110, 402–410 (2005). https://doi.org/10.1007/s00401-005-1065-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-005-1065-x

Keywords

Navigation