Skip to main content
Log in

Flame Curvature Distribution in High Pressure Turbulent Bunsen Premixed Flames

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The flame curvature statistics of turbulent premixed Bunsen flames have been analysed in this paper using a Direct Numerical Simulation (DNS) database of turbulent Bunsen flames at ambient and elevated pressures. In order to be able to perform a large parametric study in terms of pressure, heat release parameter, turbulence conditions and nozzle diameter, a single step Arrhenius type irreversible chemistry has been used for the purpose of computational economy, where thermo-chemical parameters are adjusted to match the behavior of stoichiometric methane-air flames. This analysis focuses on the characterization of the local flame geometry in response to turbulence and hydro-dynamic instability. The shape of the flame front is found to be consistent with existing experimental data. Although the Darrieus Landau instability promotes cusp formation, a qualitatively similar flame morphology can be observed for hydro-dynamically stable flames. A criterion has been suggested for the curvature PDF to become negatively skewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kobayashi, H.: Experimental study of high-pressure turbulent premixed flames. Exp. Thermal Fluid Sci. 26, 375–387 (2002)

    Article  Google Scholar 

  2. Keppeler, R., Tangermann, E., Allaudin, A., Pfitzner, M.: LES of low to high turbulent combustion in an elevated pressure environment. Flow Turb. Combust. 92(3), 767–802 (2014)

    Article  Google Scholar 

  3. Keppeler, R., Pfitzner, M.: Modelling of Landau-Darrieus and thermo-diffusive instability effects for CFD simulations of laminar and turbulent premixed combustion/ Combustion Theory and Modelling. https://doi.org/10.1080/13647830.2014.975747(2014)

  4. Creta, F., Matalon, M.: Propagation of wrinkled turbulent flames in the context of hydrodynamic theory. J. Fluid Mech. 680, 225–264 (2011)

    Article  MathSciNet  Google Scholar 

  5. Akkerman, V., Bychkov, V.: Velocity of weakly turbulent flames of finite thickness. Combust. Theory Mod. 9, 323–351 (2005)

    Article  MathSciNet  Google Scholar 

  6. Fogla, N., Creta, F., Matalon, M.: The turbulent flame speed for low-to-moderate turbulence intensities: Hydrodynamic theory vs. experiments. Combust. Flame 175, 155–169 (2017)

    Article  Google Scholar 

  7. Creta, F., Lamioni, R., Lapenna, P.E., Troiani, G.: Interplay of Darrieus-Landau instability and weak turbulence in premixed flame propagation. Phys. Rev. E 94, 053102 (2016)

    Article  MathSciNet  Google Scholar 

  8. Creta, F., Matalon, M.: Strain rate effects on the nonlinear development of hydrodynamically unstable flames. Proc. Combust. Inst. 33, 1087–1094 (2011)

    Article  Google Scholar 

  9. Matalon, M., Matkowsky, B.J.: Flames as gasdynamic discontinuities. J. Fluid Mech. 124, 239–259 (1982)

    Article  Google Scholar 

  10. Pelce, P., Clavin, P.: Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames. J. Fluid Mech. 124, 219–237 (1982)

    Article  Google Scholar 

  11. Lipatnikov, A.N., Chomiak, J.: Molecular transport effects on turbulent flame propagation and structure. Prog. Energy Combust Sci. 31, 1–73 (2004)

    Article  Google Scholar 

  12. Shepherd, I.G., Ashurst, W.T.: Flame front geometry in premixed turbulent flames. Proc. Combust. Inst. 24, 485–491 (1992)

    Article  Google Scholar 

  13. Peters, N.: Turbulent Combustion. Cambridge University Press, UK (2000)

    Book  Google Scholar 

  14. Law, C.K., Sung, C.J.: Structure, aerodynamics, and geometry of premixed flamelets. Prog. Energy Combust. Sci. 26, 459–505 (2000)

    Article  Google Scholar 

  15. Plessing, T., Kortschik, C., Mansour, M.S., Peters, N., Cheng, R.K.: Measurement of the turbulent burning velocity and the structure of premixed flames on a low swirl burner. Proc. Combust. Inst. 28, 359–368 (2000)

    Article  Google Scholar 

  16. Troiani, G., Creta, F., Matalon, M.: Experimental investigation of Darrieus–Landau instability effects on turbulent premixed flames. Proc. Combust. Inst. 35, 1451–1459 (2015)

    Article  Google Scholar 

  17. Denet, B., Haldenwang, P.: A numerical study of premixed flames Darrieus-Landau instability. Combust. Sci. Tech. 104, 143–167 (1995)

    Article  Google Scholar 

  18. Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186, 652–665 (2003)

    Article  Google Scholar 

  19. Jenkins, K.W., Cant, R.S.: Direct numerical simulation of turbulent flame Kernel. In: Recent Advances in DNS and LES, pp. 191–202. Springer (1999)

  20. Klein, M., Chakraborty, N., Jenkins, K., Cant, R.S.: Effects of initial radius on the propagation of premixed flame kernels in a turbulent environment. Phys. Fluids 18, 055102 (2006)

    Article  MathSciNet  Google Scholar 

  21. Chakraborty, N., Klein, M., Cant, R.S.: Effects of turbulent Reynolds number on the displacement speed statistics in the thin reaction zones regime of turbulent premixed combustion. J. Combust., 473679 (2011)

  22. Chakraborty, N., Klein, M., Swaminathan, N.: Effects of Lewis number on the reactive scalar gradient alignment with local strain rate in turbulent premixed flames. Proc. Combust. Inst. 32, 1409–1417 (2009)

    Article  Google Scholar 

  23. Echekki, T., Chen, J.H.: Unsteady strain rate and curvature effects in turbulent premixed methane-air flames. Combust. Flame 106, 184–202 (1996)

    Article  Google Scholar 

  24. Peters, N., Terhoeven, P., Chen, J.H., Echekki, T.: Statistics of flame displacement speeds from computations of 2-D unsteady methane-air flames. Proc. Combust. Inst. 27, 833–839 (1998)

    Article  Google Scholar 

  25. Chakraborty, N., Cant, S.: Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflow–outflow configuration. Combust. Flame 137, 129–147 (2004)

    Article  Google Scholar 

  26. Chakraborty, N., Klein, M., Cant, R.S.: Stretch rate effects on displacement speed in turbulent premixed flame Kernels in the thin reaction zones regime. Proc. Combust. Inst. 31, 1385–1392 (2007)

    Article  Google Scholar 

  27. Lai, J., Klein, M., Chakraborty, N.: Direct numerical simulation of head-on quenching of statistically planar turbulent premixed methane-air flames using a detailed chemical mechanism. Flow Turb. Combust. https://doi.org/10.1007/s10494-018-9907-5 (2018)

  28. Klein, M., Kasten, C., Chakraborty, N., Mukhadiyev, N., Im, H.G.: Turbulent scalar fluxes in Hydrogen-air premixed flames at low and high Karlovitz numbers. Combust. Theor. Modell accepted (2018)

  29. Klein, M., Alwazzan, D., Chakraborty, N.: A direct numerical simulation analysis of pressure variation in turbulent premixed Bunsen burner flames-Part 1: Scalar gradient and strain rate statistics. Comput. Fluids. https://doi.org/10.1016/j.compfluid.2018.03.010 (2018)

  30. Lachaux, T., Halter, F., Chauveaua, C., Gökalp, I., Shepherd, I.G.: Flame front analysis of high-pressure turbulent lean premixed methane–air flames. Proc. Combust. Inst. 30, 819–826 (2005)

    Article  Google Scholar 

  31. Fragner, R., Halter, F., Mazellier, N., Chauveau, C., Gökalp, I.: Investigation of pressure effects on the small scale wrinkling of turbulent premixed Bunsen flames. Proc. Combust. Inst. 35, 1527–1535 (2015)

    Article  Google Scholar 

  32. Tamadonfar, P., Gülder, Ö.L.: Effect of burner diameter on the burning velocity of premixed turbulent flames stabilized on Bunsen-type burners. Exp. Thermal Fluid Sci. 73, 42–48 (2016)

    Article  Google Scholar 

  33. Bradley, D., Lawes, M., Liu, K., Mansour, M.S.: Measurements and correlations of turbulent burning velocities over wide ranges of fuels and elevated pressures. Proc. Combust. Inst. 34, 1519–1526 (2013)

    Article  Google Scholar 

  34. Chaudhuri, V.Y., Akkerman, C.K.: Law spectral formulation of turbulent flame speed with consideration of hydrodynamic instability. Phys. Rev. E 84, 026322 (2011)

    Article  Google Scholar 

  35. Bray, K.N.C., Libby, P.A., Moss, J.B.: Unified modelling approach for premixed turbulent combustion – Part I: General formulation. Combust. Flame 61, 87–102 (1985)

    Article  Google Scholar 

  36. Cant, R.S., Rutland, C.J., Trouve, A.: Statistics for laminar flamelet modeling. In: Proceedings of the 1990 Summer Program. Stanford Univ (1990)

  37. Chakraborty, N., Cant, R.S.: Direct numerical simulation analysis of the flame surface density transport equation in the context of Large Eddy simulation. Proc. Combust. Inst. 32, 1445–1453 (2009)

    Article  Google Scholar 

  38. Gülder, Ö.L.: Contribution of small scale turbulence to burning velocity of flamelets in the thin reaction zone regime. Proc. Combust. Inst. 31, 1369–1375 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

Computer resources for this project have been provided by the Gauss Centre for Supercomputing / Leibniz Supercomputing Centre under grants: pr74ra, pn69ga. NC is grateful to ARCHER for computational support. Support by the Engineering and Physical Sciences Research Council (EPSRC) under grant numbers EP/K025163/1 and EP/P022286/1 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Klein.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, M., Nachtigal, H., Hansinger, M. et al. Flame Curvature Distribution in High Pressure Turbulent Bunsen Premixed Flames. Flow Turbulence Combust 101, 1173–1187 (2018). https://doi.org/10.1007/s10494-018-9951-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-018-9951-1

Keywords

Navigation