Skip to main content

Advertisement

Log in

LES of Low to High Turbulent Combustion in an Elevated Pressure Environment

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A subgrid scale flame surface density combustion model for the Large Eddy Simulation (LES) of premixed combustion is derived and validated. The model is based on fractal characteristics of the flame surface, assuming a self similar wrinkling of the flame between smallest and largest wrinkling length scales. Experimental and direct numerical simulation databases as well as theoretical models are used to derive a model for the fractal parameters, namely the cut-off lengths and the fractal dimension suitable in the LES context. The combustion model is designed with the intent to simulate low as well as high Reynolds number premixed turbulent flame propagation and with a focus on correct scaling with pressure. The combustion model is validated by simulations of turbulent Bunsen flames with methane and propane fuel at pressure levels between 0.1 MPa and 2 MPa and at turbulence levels of \(0 < u^{\prime }/s_{L}^{0} < 11\), conditions typical for spark ignition engines. The predicted turbulent flame speed is in a very good agreement with the experimental data and a smooth transition from resolved flame wrinkling to fully modelled, nearly subgrid-only wrinkling is realized. Evaluating the influence of mesh resolution shows a predicted mean flame surface and turbulent flame speed independent of mesh resolution for cases with 9–86 % resolved flame surface. Additional simulations of a highly turbulent jet flame at 0.1 MPa and 0.5 MPa and the comparison with experimental data in terms of flame shape, velocity field and turbulent fluctuations validates the model also at conditions typical for gas turbines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aluri, N., Muppala, S., Dinkelacker, F.: Large Eddy Simulation of lean premixed turbulent flames of three different combustion configurations using a novel reaction closure. Flow Turbul. Combust. 80, 207–224 (2008)

    Article  MATH  Google Scholar 

  2. Boger, M., Veynante, D.: Large Eddy Simulations of a turbulent premixed v-shaped flame. Adv. Turbul. VIII (2000)

  3. Boger, M., Veynante, D., Boughanem, H., Trouvé, A.: Direct numerical Simulation analysis of flame surface density concept for Large Eddy Simulation of turbulent premixed combustion. Symp. Int. Combust. 27(1), 917–925 (1998)

    Article  Google Scholar 

  4. Brandl, A., Pfitzner, M., Mooney, J., Durst, B., Kern, W.: Comparison of combustion models and assessment of their applicability to the simulation of premixed turbulent combustion in SI-engines. Flow Turbul. Combust. 75, 335–350 (2005)

    Article  MATH  Google Scholar 

  5. Bray, K.N.C., Champion, M., Libby, P.: Pre-mixed flames in stagnating turbulence: part V−evaluation of models for the chemical source term. Combust. Flame 127, 2023–2040 (2001)

    Article  Google Scholar 

  6. Bronstein, I., Semendjajew, K., Musiol, G., Mühlig, H.: Taschenbuch der Mathematik. Harry Deutsch (2008)

  7. Bruno, E., Favini, C., Giacomazzi, B.: Fractal modeling of turbulent combustion. Combust. Theory Model. 4(4), 391–412 (2000)

    Article  MATH  Google Scholar 

  8. Celik, I.B., Cehreli, Z.N., Yavuz, I.: Index of resolution quality for Large Eddy Simulations. J. Fluids Eng. 127(5), 949–958 (2005)

    Article  Google Scholar 

  9. Chakraborty, N., Cant, R.: Effects of Lewis number on flame surface density transport in turbulent premixed combustion. Combust. Flame 158(9), 1768–1787 (2011)

    Article  Google Scholar 

  10. Chakraborty, N., Klein, M.: A priori direct numerical simulation assessment of algebraic flame surface density models for turbulent premixed flames in the context of Large Eddy Simulation. Phys. Fluids. 20(8), 085,108 (2008)

    Article  Google Scholar 

  11. Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: non-dynamic formulation and initial tests. Combust. Flame 131(1–2), 159–180 (2002)

    Article  Google Scholar 

  12. Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion Part II: dynamic formulation. Combust. Flame 131(1–2), 181–197 (2002)

    Article  Google Scholar 

  13. Clavin, P.: Dynamic behavior of premixed flame fronts in laminar and turbulent flows. Prog. Energy Combust. Sci. 11(1), 1–59 (1985)

    Article  Google Scholar 

  14. Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for Large Eddy Simulations of turbulent premixed combustion. Phys. Fluids. 12(7), 1843–1863 (2000)

    Article  Google Scholar 

  15. Constantin, P., Procaccia, I., Sreenivasan, K.: Fractal geometry of isoscalar surfaces in turbulence: theory and experiments. Phys. Rev. Lett. 67, 1739–1743 (1991)

    Article  Google Scholar 

  16. Das, A.: A fractal analysis of premixed turbulent flames. PhD thesis, University of British Columbia (1993)

  17. Dinkelacker, F., Hölzler, S.: Investigation of a turbulent flame speed closure approach for premixed flame calculations. Combust. Sci. Technol. 158(1), 321–340 (2000)

    Article  Google Scholar 

  18. Driscoll, J.F.: Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities. Prog. Energy Combust. Sci. 34(1), 91–134 (2008)

    Article  Google Scholar 

  19. Durand, L.: Development, implementation and validation of LES models for inhomogeneously premixed turbulent combustion. Dissertation, Technische Universität München (2007)

  20. Duwig, C., Fuchs, L., Griebel, P., Siewert, P., Boschek, W.: Study of a confined turbulent jet: influence of combustion and pressure. AIAA J. 45(3), 624–639 (2007)

    Article  Google Scholar 

  21. Ferziger, J.H., Echekki, T.: A simplified reaction rate model and its application to the analysis of premixed flames. Combust. Sci. Technol. 89(5–6), 293–315 (1993)

    Article  Google Scholar 

  22. Fureby, C.: A fractal flame-wrinkling Large Eddy Simulation model for premixed turbulent combustion. Proc. Combust. Inst. 30(1), 593–601 (2005)

    Article  Google Scholar 

  23. Fureby, C., Tabor, G., Weller, H.G., Gosman, A.D.: A comparative study of subgrid scale models in homogeneous isotropic turbulence. Phys. Fluids. 9(5), 1416–1429 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Goix, P.J., Shepherd, I.G., Trinite, M.: A fractal study of a premixed V-shaped H2/Air flame. Combust. Sci. Technol. 63(4–6), 275–286 (1989)

    Article  Google Scholar 

  25. Göttgens, J., Mauss, F., Peters, N.: Analytic approximations of burning velocities and flame thicknesses of lean hydrogen, methane, ethylene, ethane, acetylene, and propane flames. Twenty-Fourth Symposium on Combustion. Symp. Int. Combust. 24(1), 129–135 (1992)

    Article  Google Scholar 

  26. Gouldin, F.: An application of fractals to modeling premixed turbulent flames. Combust. Flame 68(3), 249–266 (1987)

    Article  Google Scholar 

  27. Gouldin, F., Bray, K., Chen, J.Y.: Chemical closure model for fractal flamelets. Combust. Flame 77(3–4), 241–259 (1989)

    Article  Google Scholar 

  28. Griebel, P., Bombach, R., Inauen, A., Scharen, R., Schenker, S., Siewert, P.: Flame characteristics and turbulent flame speeds of turbulent, high-pressure, lean premixed methane/air flames. ASME Conference Proceedings 2005(4725X), 405–413 (2005)

  29. Gülder, Ö.L., Smallwood, G.J.: Inner cutoff scale of flame surface wrinkling in turbulent premixed flames. Combust. Flame 103(1–2), 107–114 (1995)

    Article  Google Scholar 

  30. Hawkes, E.R., Cant, R.S.: Implications of a flame surface density approach to Large Eddy Simulation of premixed turbulent combustion. Combust. Flame 126(3), 1617–1629 (2001)

    Article  Google Scholar 

  31. Hawkes, E.R., Chatakonda, O., Kolla, H., Kerstein, A.R., Chen, J.H.: A petascale direct numerical simulation study of the modelling of flame wrinkling for Large Eddy Simulations in intense turbulence. Combust. Flame 159(8), 2690–2703 (2012)

    Article  Google Scholar 

  32. Hernández-Pérez, F., Yuen, F., Groth, C., Gülder, Ö.: LES of a laboratory-scale turbulent premixed Bunsen flame using FSD, PCM-FPI and thickened flame models. Proc. Combust. Inst. 33(1), 1365–1371 (2011)

    Article  Google Scholar 

  33. Jasak, H.: Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows. PhD thesis, Imperial College of Science, Technology and Medicine (1996)

  34. Kempf, A., Klein, M., Janicka, J.: Efficient generation of initial- and inflow-conditions for transient turbulent flows in arbitrary geometries. Flow Turbul. Combust. 74, 67–84 (2005)

    Article  MATH  Google Scholar 

  35. Keppeler, R., Kranawetvogl, J., Jarcyk, M.M., Pfitzner, M.: Large Eddy Simulationen von Rohr- Kanal- und Freistrahlströmung mit OpenFOAM. Technical report, Universität der Bundeswehr München (2011)

  36. Keppeler, R., Tangermann, E., Pfitzner, M.: Extension of a Large Eddy Simulation combustion model for high pressures and for low Reynolds number flames. Proceedings of European Combustion Meeting, Cardiff (2011)

    Google Scholar 

  37. Kerstein, AR.: Fractal dimension of turbulent premixed flames. Combust. Sci. Technol. 60(4–6), 441–445 (1988)

    Article  Google Scholar 

  38. Klimenko, A.Y.: Examining the cascade hypothesis for turbulent premixed combustion. Combust. Sci. Technol. 139, 15–40 (1998)

    Article  Google Scholar 

  39. Kobayashi, H., Tamura, T., Maruta, K., Niioka, T., Williams, F.A.: Burning velocity of turbulent premixed flames in a high-pressure environment. Symp. Int. Combust. 26(1), 389–396 (1996)

    Article  Google Scholar 

  40. Kobayashi, H., Nakashima, T., Tamura, T., Maruta, K., Niioka, T.: Turbulence measurements and observations of turbulent premixed flames at elevated pressures up to 3.0 MPa. Combust. Flame 108(1–2), 104–110 (1997)

    Article  Google Scholar 

  41. Kobayashi, H., Kawabata, Y., Maruta, K.: Experimental study on general correlation of turbulent burning velocity at high pressure. Symp. Int. Combust. 27(1), 941–948 (1998)

    Article  Google Scholar 

  42. Kobayashi, H., Kawazoe, H.: Flame instability effects on the smallest wrinkling scale and burning velocity of high-pressure turbulent premixed flames. Proc. Combust. Inst. 28(1), 375–382 (2000)

    Article  Google Scholar 

  43. Kuenne, G., Ketelheun, A., Janicka, J.: LES modeling of premixed combustion using a thickened flame approach coupled with FGM tabulated chemistry. Combust. Flame 158(9), 1750–1767 (2011)

    Article  Google Scholar 

  44. Lecocq, G., Richard, S., Colin, O., Vervisch, L.: Gradient and counter-gradient modeling in premixed flames: Theoretical study and application to the les of a lean premixed turbulent swirl-burner. Combust. Sci. Technol. 182(4–6), 465–479 (2010)

    Article  Google Scholar 

  45. Lecocq, G., Richard, S., Colin, O., Vervisch, L. Hybrid presumed pdf and flame surface density approaches for Large Eddy Simulation of premixed turbulent combustion: part 1: formalism and simulation of a quasi-steady burner. Combust. Flame 158(6), 1201–1214 (2011)

    Article  Google Scholar 

  46. Lee, G.G., Huh, K.Y., Kobayashi, H.: Measurement and analysis of flame surface density for turbulent premixed combustion on a nozzle-type burner. Combust. Flame 122(1–2), 43–57 (2000)

    Article  Google Scholar 

  47. Lindstedt, R., Sakthitharan, V.: Modelling of transient compressible turbulent reacting flows. Eight Symposium Turbulence Shear Flows (1991)

  48. Lindstedt, R., Váos, E.: Modeling of premixed turbulent flames with second moment methods. Combust. Flame 116(4), 461–485 (1999)

    Article  Google Scholar 

  49. Lipatnikov, A., Chomiak, J.: Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations. Prog. Energy Combust. Sci. 28(1), 1–74 (2002)

    Article  Google Scholar 

  50. Lipatnikov, A., Chomiak, J.: Molecular transport effects on turbulent flame propagation and structure. Prog. Energy Combust. Sci. 31(1), 1–73 (2005)

    Article  Google Scholar 

  51. Mandelbrot, B.B.: On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars. J. Fluid Mech. 72, 401–416 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  52. Meneveau, C., Poinsot, T.: Stretching and quenching of flamelets in premixed turbulent combustion. Combust. Flame 86(4), 311–332 (1991)

    Article  Google Scholar 

  53. Müller, U.C., Bollig, M., Peters, N.: Approximations for burning velocities and Markstein numbers for lean hydrocarbon and methanol flames. Combust. Flame 108(3), 349–356 (1997)

    Article  Google Scholar 

  54. Muppala, S., Aluri, N., Dinckelacker, F., Leipertz, A.: Development of an algebraic reaction rate closure for the numerical calculation of turbulent premixed methane, ethylene, and propane/air flames for pressures up to 1.0 MPa. Combust. Flame 140, 257–266 (2005)

    Article  Google Scholar 

  55. Murayama, M., Takeno, T.: Fractal-like character of flamelets in turbulent premixed combustion. Symp. Int. Combust. 22(1), 551–559 (1989)

    Article  Google Scholar 

  56. Peters, N.: Turbulent combustion, 1st edn. Cambridge University Press (2000)

  57. Pitsch, H.: A consistent level set formulation for Large Eddy Simulation of premixed turbulent combustion. Combust. Flame 143(4), 587–598 (2005)

    Article  Google Scholar 

  58. Poinsot, T., Veynante, D.: Theoretical and numerical combustion, 2nd edn. Edwards (2005)

  59. Poinsot, T., Veynante, D., Candel, S.: Diagrams of premixed turbulent combustion based on direct simulation. Symp. Int. Combust. 23(1), 613–619 (1991)

    Article  Google Scholar 

  60. Richard, S., Colin, O., Vermorel, O., Benkenida, A., Angelberger, C., Veynante, D.: Towards Large Eddy Simulation of combustion in spark ignition engines. Proc. Combust. Inst. 31(2), 3059–3066 (2007)

    Article  Google Scholar 

  61. Santavicca, G.L., North, D.A.: The fractal nature of premixed turbulent flames. Combust. Sci. Technol. 72(4), 215–232 (1990)

    Google Scholar 

  62. Schumann, U.: Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18, 376–404 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  63. Schwertfilm, F., Manhart, M.: DNS of passive scalar transport in turbulent channel flow at high Schmidt numbers. Turbul. Heat Mass Transf. 5, 289–292 (2006)

    Google Scholar 

  64. Siewert, P.: Flame front characteristics of turbulent lean premixed methane / air flames at high-pressure. Dissertation, ETH Zürich (2007)

  65. Smallwood, G., Gülder, Ö., Snelling, D., Deschamps, B., Gökalp, I.: Characterization of flame front surfaces in turbulent premixed methane/Air combustion. Combust. Flame 101(4), 461–470 (1995)

    Article  Google Scholar 

  66. Soika, A., Dinkelacker, F., Leipertz, A.: Measurement of the resolved flame structure of turbulent premixed flames with constant reynolds number and varied stoichiometry. In: Symposium International Combustion, vol. 27, 785–792. Elsevier (1998)

  67. Tangermann, E., Keppeler, R., Pfitzner, M.: Premixed Turbulent Combustion Models for Large Eddy and RANS Simulations. Proceedings of ASME Turbo Expo pp. GT2010–22,298 (2010)

  68. Tangermann, E., Pfitzner, M.: Evaluation of combustion models for combustion-induced vortex breakdown. J. Turbul. 10(7) (2009)

  69. Vervisch, L., Domingo, P., Lodato, G., Veynante, D.: Scalar energy fluctuations in Large Eddy Simulation of turbulent flames: statistical budgets and mesh quality criterion. Combust. Flame 157(4), 778–789 (2010)

    Article  Google Scholar 

  70. Veynante, D., Trouvé, A., Bray, K.N.C., Mantel, T.: Gradient and counter-gradient scalar transport in turbulent premixed flames. J. Fluid Mech. 332, 263–293 (1997)

    MATH  Google Scholar 

  71. Veynante, D., Vervisch, L.: Turbulent combustion modeling. Prog. Energy Combust. Sci. 28, 193–266 (2002)

    Article  Google Scholar 

  72. Wang, G., Boileau, M., Veynante, D.: Implementation of a dynamic thickened flame model for Large Eddy Simulations of turbulent premixed combustion. Combust. Flame 158(11), 2199–2213 (2011)

    Article  Google Scholar 

  73. Weller, H., Tabor, G., Gosman, A., Fureby, C.: Application of a flame-wrinkling LES combustion model to a turbulent mixing layer. Twenty-Seventh Symposium on Combustion. Symp. Int. Combust. 27, 899–907 (1998)

    Article  Google Scholar 

  74. Zimont, V., Battaglia, V.: Joint RANS/LES approach to premixed flame modelling in the context of the TFC combustion model. Flow Turbul. Combust. 77, 305–331 (2006)

    Article  MATH  Google Scholar 

  75. Zimont, VL.: A numerical model of premixed turbulent combustion of gases. Chem. Phys. Rep. 14(1), 993–1025 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Keppeler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keppeler, R., Tangermann, E., Allaudin, U. et al. LES of Low to High Turbulent Combustion in an Elevated Pressure Environment. Flow Turbulence Combust 92, 767–802 (2014). https://doi.org/10.1007/s10494-013-9525-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-013-9525-1

Keywords

Navigation