Skip to main content
Log in

Experimental study of transition in dynamical states of thermo-acoustic oscillations in a turbulent bluff body combustor

  • Research
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study investigates the shift in dynamical states of the thermo-acoustic oscillations for the turbulent syngas combustor having a bluff body for the flame anchoring. In this paper, an analysis was conducted to look into the effects of three different syngas compositions on the variation of Reynolds number (Re) in the range of 2289 to 8009. The analysis involved simultaneous, unsteady pressure measurement and OH* chemiluminescence. The investigation reveals that as the controlled parameters vary, the system exhibits a sequence of dynamic states characterized by distinct nonlinear oscillations. This study aims to explore the infrequently observed transitions from low-frequency instability (LFI) to high-frequency instability (HFI) by examining various time-series data and post-processing techniques. Additionally, it aims to understand how these transitions ultimately lead to the emergence of combustion noise as a result of a change in Reynolds number. To ascertain the characteristics of thermo-acoustic oscillations under investigation, a comprehensive analysis is conducted utilizing nonlinear time-series analysis techniques like phase portrait and recurrence plots. The investigation of flame behavior in response to changes in Reynolds number has been conducted using time-resolved OH* chemiluminescence. The results obtained from this study reveal distinct flame behavior patterns. The combustion instability of syngas at HFI is driven by flame modulated by small-scale structures and its anchoring in the shear layer of the bluff-body whereas the LFI is due to larger flame modulations near the wall of the combustion chamber. In addition, the recurrence analysis method is employed to monitor the progression of the dynamical states to understand the nature of the dynamical states. Such analysis will ultimately contribute to the establishment of a stable or nearly stable combustion system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are not publicly available due to private use but are available from the corresponding author on reasonable request.

References

  1. Chen, L., Yong, S.Z., Ghoniem, A.F.: Oxy-fuel combustion of pulverized coal: characterization, fundamentals, stabilization and CFD modeling. Prog. Energy Combust. Sci. 38, 156–214 (2012). https://doi.org/10.1016/j.pecs.2011.09.003

    Article  Google Scholar 

  2. Wall, T.F.: Combustion processes for carbon capture. Proc. Combust. Inst. 31, 31–47 (2007). https://doi.org/10.1016/j.proci.2006.08.123

    Article  Google Scholar 

  3. Verhelst, S., Wallner, T.: Hydrogen-fueled internal combustion engines. Prog. Energy Combust. Sci. 35, 490–527 (2009). https://doi.org/10.1016/j.pecs.2009.08.001

    Article  Google Scholar 

  4. Hwang, J., Sohn, K., Bouvet, N., Yoon, Y.: NOx scaling of syngas H2/CO turbulent non-premixed jet flames. Combust. Sci. Technol. 185, 1715–1734 (2013). https://doi.org/10.1080/00102202.2013.831847

    Article  Google Scholar 

  5. Pramanik, S., Ravikrishna, R.V.: Non-premixed operation strategies for a low emission syngas fuelled reverse flow combustor. Energy 254, 124332 (2022). https://doi.org/10.1016/j.energy.2022.124332

    Article  Google Scholar 

  6. Lieuwen, T.C., Yang, V.; Yetter, R. Synthesis Gas Combustion—Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, (2010)

  7. Natarajan, J., Lieuwen, T., Seitzman, J.: Laminar flame speeds of H2/CO mixtures: effect of CO2 dilution, preheat temperature, and pressure. Combust. Flame 151, 104–119 (2007). https://doi.org/10.1016/j.combustflame.2007.05.003

    Article  Google Scholar 

  8. Milton, B.E., Keck, J.C.: Laminar burning velocities in stoichiometric hydrogen and hydrogen hydrocarbon gas mixtures. Combust. Flame 58, 13–22 (1984). https://doi.org/10.1016/0010-2180(84)90074-9

    Article  Google Scholar 

  9. Reyes, M., Tinaut, F.V., Horrillo, A., Lafuente, A.: Experimental characterization of burning velocities of premixed methane-air and hydrogen-air mixtures in a constant volume combustion bomb at moderate pressure and temperature. Appl. Therm. Eng. 130, 684–697 (2018). https://doi.org/10.1016/j.applthermaleng.2017.10.165

    Article  Google Scholar 

  10. Walton, S.M., He, X., Zigler, B.T., Wooldridge, M.S.: An experimental investigation of the ignition properties of hydrogen and carbon monoxide mixtures for syngas turbine applications. Proc. Combust. Inst. 31, 3147–3154 (2007). https://doi.org/10.1016/j.proci.2006.08.059

    Article  Google Scholar 

  11. Hu, E., Huang, Z., He, J., Jin, C., Zheng, J.: Experimental and numerical study on laminar burning characteristics of premixed methane–hydrogen–air flames. Int. J. Hydrogen Energy 34, 4876–4888 (2009). https://doi.org/10.1016/j.ijhydene.2009.03.058

    Article  Google Scholar 

  12. Kalitan, D.M., Petersen, E.L., Mertens, J.D., Crofton, M.W.: Ignition of lean CO/H2/air mixtures at elevated pressures. In: Volume 1: combustion and fuels, education. pp. 389–396. ASMEDC (2006)

  13. Noble, D.R., Zhang, Q., Shareef, A., Tootle, J., Meyers, A., Lieuwen, T.: Syngas mixture composition effects upon flashback and blowout. In: Volume 1: combustion and fuels, education. pp. 357–368. ASMEDC (2006)

  14. Lieuwen, T., McDonell, V., Petersen, E., Santavicca, D.: Fuel flexibility influences on premixed combustor blowout, flashback, autoignition, and stability. J. Eng. Gas. Turbine. Power. (2008). https://doi.org/10.1115/1.2771243

    Article  Google Scholar 

  15. Whitty, K.J., Zhang, H.R., Eddings, E.G.: Emissions from syngas combustion. Combust. Sci. Technol. 180, 1117–1136 (2008). https://doi.org/10.1080/00102200801963326

    Article  Google Scholar 

  16. Hasegawa, T., Tamaru, T.: Gas turbine combustion technology reducing both fuel-NOx and thermal-NOx Emissions for oxygen-blown IGCC with hot/dry synthetic gas cleanup. J. Eng. Gas. Turbine. Power. 129, 358–369 (2007). https://doi.org/10.1115/1.2432896

    Article  Google Scholar 

  17. Dodo, S., Asai, T., Koizumi, H., Takahashi, H., Yoshida, S., Inoue, H.: Performance of a multiple-injection dry low NOx combustor with hydrogen-rich syngas fuels. J. Eng. Gas. Turbine. Power. (2013). https://doi.org/10.1115/1.4006691

    Article  Google Scholar 

  18. Hasegawa, T., Sato, M., Nakata, T.: A study of combustion characteristics of gasified coal fuel. J. Eng. Gas. Turbine. Power. 123, 22–32 (2001). https://doi.org/10.1115/1.1287586

    Article  Google Scholar 

  19. Lee, M.C., Seo, S.B., Chung, J.H., Kim, S.M., Joo, Y.J., Ahn, D.H.: Gas turbine combustion performance test of hydrogen and carbon monoxide synthetic gas. Fuel 89, 1485–1491 (2010). https://doi.org/10.1016/j.fuel.2009.10.004

    Article  Google Scholar 

  20. Lee, M.C., Seo, S.B., Yoon, J., Kim, M., Yoon, Y.: Experimental study on the effect of N2, CO2, and steam dilution on the combustion performance of H2 and CO synthetic gas in an industrial gas turbine. Fuel 102, 431–438 (2012). https://doi.org/10.1016/j.fuel.2012.05.028

    Article  Google Scholar 

  21. Rayleigh, J.W.S.B; Lindsay, R.B.: The theory of sound (Vol. 2); Dover Publications: New York, reprinted, (1945)

  22. Park, J., Lee, M.C.: Combustion instability characteristics of H2/CO/CH4 syngases and synthetic natural gases in a synthetic natural gases in a partially-premixed gas turbine combustor: Part I—Frequency and mode analysis. Int J Hydrogen Energy. 41(18), 7484–7493 (2016a). https://doi.org/10.1016/j.ijhydene.2016.02.047

    Article  Google Scholar 

  23. Park, J., Lee, M.C.: Combustion instability characteristics of H2/CO/CH4 syngases and synthetic natural gases in a partially-premixed gas turbine combustor: part II—Time lag analysis. Int J Hydrogen Energy. 41(18), 1304–1312 (2016b). https://doi.org/10.1016/j.ijhydene.2015.10.065

    Article  Google Scholar 

  24. Shih, H.-Y.: Computed extinction limits and flame structures of H2/O2 counterflow diffusion flames with CO2 dilution. Int. J. Hydrogen Energy 34, 4005–4013 (2009). https://doi.org/10.1016/j.ijhydene.2009.03.013

    Article  Google Scholar 

  25. Strakey, P., Sidwell, T., Ontko, J.: Investigation of the effects of hydrogen addition on lean extinction in a swirl stabilized combustor. Proc. Combust. Inst. 31, 3173–3180 (2007). https://doi.org/10.1016/j.proci.2006.07.077

    Article  Google Scholar 

  26. Guo, H., Neill, W.: A numerical study on the effect of hydrogen/reformate gas addition on flame temperature and NO formation in strained methane/air diffusion flames. Combust. Flame 156, 477–483 (2009). https://doi.org/10.1016/j.combustflame.2008.07.009

    Article  Google Scholar 

  27. Baraiya, N.A., Chakravarthy, S.R.: Excitation of high frequency thermoacoustic oscillations by syngas in a non-premixed bluff body combustor. Int. J. Hydrogen Energy 44, 15598–15609 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.087

    Article  Google Scholar 

  28. Baraiya, N.A., Chakravarthy, S.R.: Effect of syngas composition on high frequency combustion instability in a non-premixed turbulent combustor. Int. J. Hydrogen Energy 44, 6299–6312 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.115

    Article  Google Scholar 

  29. Baraiya, N.A., Ramanan, V., Baladandayuthapani, N., Vegad, C.S., Chakravarthy, S.R.: Experimental investigation into the role of mean flame stabilization on the combustion dynamics of high-hydrogen fuels in a turbulent combustor. J. Eng. Gas. Turbine. Power. (2021). https://doi.org/10.1115/1.4050067

    Article  Google Scholar 

  30. Baraiya, N.A., Ramanan, V., Nagarajan, B., Vegad, C.S., Chakravarthy, S.R.: Experimental analysis of transition to higher acoustic mode in syngas combustion dynamics. J. Propuls. Power. 38, 714–725 (2022). https://doi.org/10.2514/1.B38601

    Article  Google Scholar 

  31. Baraiya, N.A., Ramanan, V., Baladandayuthapani, N., Vegad, C.S., Chakravarthy, S.R.: Role of pumping and wrinkle propagation mechanisms in exciting different acoustic-modes in turbulent syngas combustion. Int. J. Hydrogen Energy 46, 13413–13429 (2021). https://doi.org/10.1016/j.ijhydene.2021.01.151

    Article  Google Scholar 

  32. Baraiya, N.A., Ramanan, V., Baladandayuthapani, N., Vegad, C.S., Chakravarthy, S.R.: Investigation of oscillatory states involving acoustic mode shifts in a turbulent syngas combustion using non-stationary time-series analysis. Flow Turbul. Combust. 107, 1067–1089 (2021). https://doi.org/10.1007/s10494-021-00258-x

    Article  Google Scholar 

  33. Baraiya, N.A., Ramanan, V., Nagarajan, B., Vegad, C.S., Chakravarthy, S.R.: Dynamic mode decomposition of syngas (H2/CO) flame during transition to high-frequency instability in turbulent combustor. Energy 263, 125998 (2023). https://doi.org/10.1016/j.energy.2022.125998

    Article  Google Scholar 

  34. Ramanan, V., Baraiya, N.A., Chakravarthy, S.R.: Detection and identification of nature of mutual synchronization for low- and high-frequency non-premixed syngas combustion dynamics. Nonlinear Dyn. 108, 1357–1370 (2022). https://doi.org/10.1007/s11071-022-07264-2

    Article  Google Scholar 

  35. Ramanan, V., Ramankutty, A., Sreedeep, S., Chakravarthy, S.R.: Dynamical states of thermo-acoustic system with respect to frequency–phase relationship based on probabilistic oscillator model. Nonlinear Dyn. 110, 1633–1649 (2022). https://doi.org/10.1007/s11071-022-07693-z

    Article  Google Scholar 

  36. Braun, T., Unni, V.R., Sujith, R.I., Kurths, J., Marwan, N.: Detection of dynamical regime transitions with lacunarity as a multiscale recurrence quantification measure. Nonlinear Dyn. 104, 3955–3973 (2021). https://doi.org/10.1007/s11071-021-06457-5

    Article  Google Scholar 

  37. Palies, P., Durox, D., Schuller, T., Candel, S.: Nonlinear combustion instability analysis based on the flame describing function applied to turbulent premixed swirling flames. Combust. Flame 158, 1980–1991 (2011). https://doi.org/10.1016/j.combustflame.2011.02.012

    Article  Google Scholar 

  38. Noiray, N., Durox, D., Schuller, T., Candel, S.: A unified framework for nonlinear combustion instability analysis based on the flame describing function. J. Fluid Mech. 615, 139–167 (2008). https://doi.org/10.1017/S0022112008003613

    Article  Google Scholar 

  39. Rao, Z., Li, R., Zhang, B., Wang, B., Zhao, D., Akhtar, M.S.: Experimental investigations of equivalence ratio effect on nonlinear dynamics features in premixed swirl-stabilized combustor. Aerosp. Sci. Technol. 112, 106601 (2021). https://doi.org/10.1016/j.ast.2021.106601

    Article  Google Scholar 

  40. Chen, F., Ruan, C., Yu, T., Cai, W., Mao, Y., Lu, X.: Effects of fuel variation and inlet air temperature on combustion stability in a gas turbine model combustor. Aerosp. Sci. Technol. 92, 126–138 (2019). https://doi.org/10.1016/j.ast.2019.05.052

    Article  Google Scholar 

  41. Yoon, J., Joo, S., Lee, M.C., Kim, J., Oh, J. and Yoon, Y.: The effect of fuel composition on combustion instability mode occurrence in a model gas turbine combustor. In Turbo expo: power for land, sea, and air (Vol. 56680, p. V04AT04A045). American Society of Mechanical Engineers (2015). https://doi.org/10.1115/GT2015-42601

  42. Choi, O., Lee, M.C.: Investigation into the combustion instability of synthetic natural gases using high speed flame images and their proper orthogonal decomposition. Int. J. Hydrogen Energy 41, 20731–20743 (2016). https://doi.org/10.1016/j.ijhydene.2016.09.201

    Article  Google Scholar 

  43. Yoon, J., Joo, S., Kim, J., Lee, M.C., Lee, J.G., Yoon, Y.: Effects of convection time on the high harmonic combustion instability in a partially premixed combustor. Proc. Combust. Inst. 36, 3753–3761 (2017). https://doi.org/10.1016/j.proci.2016.06.105

    Article  Google Scholar 

  44. Balachandran, R., Chakravarthy, S.R., Sujith, R.I.: Characterization of an acoustically self-excited combustor for spray evaporation. J Propuls Power. 24, 1382–1389 (2008). https://doi.org/10.2514/1.28851

    Article  Google Scholar 

  45. Altay, H.M., Speth, R.L., Hudgins, D.E., Ghoniem, A.F.: Flame–vortex interaction driven combustion dynamics in a backward-facing step combustor. Combust. Flame 156, 1111–1125 (2009). https://doi.org/10.1016/j.combustflame.2009.02.003

    Article  Google Scholar 

  46. Hong, S., Shanbhogue, S.J., Speth, R.L., Ghoniem, A.F.: On the phase between pressure and heat release fluctuations for propane/hydrogen flames and its role in mode transitions. Combust. Flame 160, 2827–2842 (2013). https://doi.org/10.1016/j.combustflame.2013.07.001

    Article  Google Scholar 

  47. Chakravarthy, S.R., Sivakumar, R., Shreenivasan, O.J.: Vortex-acoustic lock-on in bluff-body and backward-facing step combustors. Sadhana 32, 145–154 (2007). https://doi.org/10.1007/s12046-007-0013-y

    Article  Google Scholar 

  48. Taamallah, S., LaBry, Z.A., Shanbhogue, S.J., Ghoniem, A.F.: Thermo-acoustic instabilities in lean premixed swirl-stabilized combustion and their link to acoustically coupled and decoupled flame macrostructures. Proc. Combust. Inst. 35, 3273–3282 (2015). https://doi.org/10.1016/j.proci.2014.07.002

    Article  Google Scholar 

  49. Taamallah, S., LaBry, Z.A., Shanbhogue, S.J., Habib, M.A.M., Ghoniem, A.F.: Correspondence between “stable” flame macrostructure and thermo-acoustic instability in premixed swirl-stabilized turbulent combustion. J. Eng. Gas. Turbine. Power. (2015). https://doi.org/10.1115/1.4029173

    Article  Google Scholar 

  50. Shanbhogue, S.J., Sanusi, Y.S., Taamallah, S., Habib, M.A., Mokheimer, E.M.A., Ghoniem, A.F.: Flame macrostructures, combustion instability and extinction strain scaling in swirl-stabilized premixed CH4/H2 combustion. Combust. Flame 163, 494–507 (2016). https://doi.org/10.1016/j.combustflame.2015.10.026

    Article  Google Scholar 

  51. Ramanan, V., Baraiya, N.A., Chakravarthy, S.R.: Experimental analysis of two-period quasi-periodic oscillations in a turbulent hydrogen combustor. J. Vis. (Tokyo). 24, 963–978 (2021). https://doi.org/10.1007/s12650-021-00752-4

    Article  Google Scholar 

  52. Dowling, A.P., Stow, S.R.: Acoustic analysis of gas turbine combustors. J. Propuls. Power. 19, 751–764 (2003). https://doi.org/10.2514/2.6192

    Article  Google Scholar 

  53. Ducruix, S., Schuller, T., Durox, D., Candel, S.: Combustion dynamics and instabilities: elementary coupling and driving mechanisms. J. Propuls. Power. 19, 722–734 (2003). https://doi.org/10.2514/2.6182

    Article  Google Scholar 

  54. Candel, S.: Combustion dynamics and control: progress and challenges. Proc. Combust. Inst. 29, 1–28 (2002). https://doi.org/10.1016/S1540-7489(02)80007-4

    Article  Google Scholar 

  55. Lieuwen, T.C.: Unsteady combustor physics. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  56. Chakravarthy, S.R., Sampath, R., Ramanan, V.: Dynamics and diagnostics of flame-acoustic interactions. Combust. Sci. Technol. 189, 395–437 (2017). https://doi.org/10.1080/00102202.2016.1202938

    Article  Google Scholar 

  57. Baraiya, N.A., Nagarajan, B., Chakravarthy, S.R.: Experimental Investigation of Combustion Dynamics in a Turbulent Syngas Combustor. In: Volume 4B: Combustion, Fuels and Emissions. American Society of Mechanical Engineers (2017)

  58. Ruan, C., Chen, F., Yu, T., Cai, W., Li, X., Lu, X.: Experimental study on flame/flow dynamics in a multi-nozzle gas turbine model combustor under thermo-acoustically unstable condition with different swirler configurations. Aerosp. Sci. Technol. 98, 105692 (2020). https://doi.org/10.1016/j.ast.2020.105692

    Article  Google Scholar 

  59. Xu, L., Zhang, G., Wang, G., Feng, Z., Tian, X., Li, L., Qi, F.: Effects of acoustic liner on thermoacoustic instabilities in a premixed swirl combustor. Aerosp. Sci. Technol. 118, 107070 (2021). https://doi.org/10.1016/j.ast.2021.107070

    Article  Google Scholar 

  60. Thirumoorthy, M., Chakravarthy, S.R., Brahmanandam, P.V.G.: Shape effects of single axisymmetric cavity in a circular duct on flow induced acoustic oscillations. Aerosp. Sci. Technol. 67, 181–192 (2017). https://doi.org/10.1016/j.ast.2017.03.021

    Article  Google Scholar 

  61. Karthik, B., Kowsik, B., Venkareswarlu, N., Sujith, R., Chakravarthy, S.: November. Acoustic field in a duct resulting from vortex shedding from multiple restrictors. In 39th Aerospace Sciences Meeting and Exhibit (p. 1105) (2005). https://doi.org/10.2514/6.2001-1105

  62. Meier, W., Boxx, I., Stöhr, M., Carter, C.D.: Laser-based investigations in gas turbine model combustors. Exp. Fluids 49, 865–882 (2010). https://doi.org/10.1007/s00348-010-0889-x

    Article  Google Scholar 

  63. Dowling, A.P.: A kinematic model of a ducted flame. J. Fluid Mech. 394, 51–72 (1999). https://doi.org/10.1017/S0022112099005686

    Article  Google Scholar 

  64. Kim, K.T., Lee, J.G., Quay, B.D., Santavicca, D.A.: Spatially distributed flame transfer functions for predicting combustion dynamics in lean premixed gas turbine combustors. Combust. Flame 157, 1718–1730 (2010). https://doi.org/10.1016/j.combustflame.2010.04.016

    Article  Google Scholar 

  65. Han, X., Li, J., Morgans, A.S.: Prediction of combustion instability limit cycle oscillations by combining flame describing function simulations with a thermoacoustic network model. Combust. Flame 162, 3632–3647 (2015). https://doi.org/10.1016/j.combustflame.2015.06.020

    Article  Google Scholar 

  66. Wu, G., Lu, Z., Guan, Y., Li, Y., Ji, C.Z.: Characterizing nonlinear interaction between a premixed swirling flame and acoustics: Heat-driven acoustic mode switching and triggering. Energy 158, 546–554 (2018). https://doi.org/10.1016/j.energy.2018.06.056

    Article  Google Scholar 

  67. Seo, S., Lee, S.-Y.: Effects of unmixedness on combustion instabilities in a lean-premixed gas turbine combustor. Flow Turbul. Combust. 85, 95–112 (2010). https://doi.org/10.1007/s10494-010-9259-2

    Article  Google Scholar 

  68. Schildmacher, K.-U., Koch, R., Bauer, H.-J.: Experimental characterization of premixed flame instabilities of a model gas turbine burner. Flow, Turbul. Combust. Former.: Appl. Sci. Res. 76, 177–197 (2006). https://doi.org/10.1007/s10494-006-9012-z

    Article  Google Scholar 

  69. Srinivasan, S., Ranjan, R., Menon, S.: Flame dynamics during combustion instability in a high-pressure. Shear-Coaxial Injector. Combustor. Flow. Turbul. Combust. 94, 237–262 (2015). https://doi.org/10.1007/s10494-014-9569-x

    Article  Google Scholar 

  70. Giezendanner-Thoben, R., Meier, U., Meier, W., Aigner, M.: Phase-locked temperature measurements by two-line OH PLIF thermometry of a self-excited combustion instability in a gas turbine model combustor. Flow Turbul. Combust. 75, 317–333 (2005). https://doi.org/10.1007/s10494-005-8587-0

    Article  Google Scholar 

  71. Stein, O.T., Böhm, B., Dreizler, A., Kempf, A.M.: Highly-resolved LES and PIV analysis of isothermal turbulent opposed jets for combustion applications. Flow Turbul. Combust. 87, 425–447 (2011). https://doi.org/10.1007/s10494-010-9310-3

    Article  Google Scholar 

  72. Gotoda, H., Nikimoto, H., Miyano, T., Tachibana, S.: Dynamic properties of combustion instability in a lean premixed gas-turbine combustor. Chaos: An Interdiscip. J. Nonlinear Sci. (2011). https://doi.org/10.1063/1.3563577

    Article  Google Scholar 

  73. Kabiraj, L., Sujith, R.I., Wahi, P.: Bifurcations of self-excited ducted laminar premixed flames. J. Eng. Gas. Turbine. Power. (2012). https://doi.org/10.1115/1.4004402

    Article  Google Scholar 

  74. Kabiraj, L., Saurabh, A., Wahi, P., Sujith, R.I.: Route to chaos for combustion instability in ducted laminar premixed flames. Chaos: An Interdiscip. J. Nonlinear Sci. (2012). https://doi.org/10.1063/1.4718725

    Article  Google Scholar 

  75. Nair, V., Thampi, G., Karuppusamy, S., Gopalan, S., Sujith, R.I.: Loss of chaos in combustion noise as a precursor of impending combustion instability. Int. J. Spray Combust. Dyn. 5, 273–290 (2013). https://doi.org/10.1260/1756-8277.5.4.273

    Article  Google Scholar 

  76. Mondal, S., Pawar, S.A., Sujith, R.I.: Synchronous behaviour of two interacting oscillatory systems undergoing quasiperiodic route to chaos. Chaos: An Interdiscip. J. Nonlinear Sci. (2017). https://doi.org/10.1063/1.4991744

    Article  Google Scholar 

  77. Ghosh, A., Sujith, R.I.: Emergence of order from chaos: a phenomenological model of coupled oscillators. Chaos Solitons Fractals 141, 110334 (2020). https://doi.org/10.1016/j.chaos.2020.110334

    Article  MathSciNet  Google Scholar 

  78. Marwan, N., Carmenromano, M., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 438, 237–329 (2007). https://doi.org/10.1016/j.physrep.2006.11.001

    Article  MathSciNet  Google Scholar 

  79. Gotoda, H., Shinoda, Y., Kobayashi, M., Okuno, Y., Tachibana, S.: Detection and control of combustion instability based on the concept of dynamical system theory. Phys. Rev. E 89, 022910 (2014). https://doi.org/10.1103/PhysRevE.89.022910

    Article  Google Scholar 

  80. Zan, H., Zhou, W., Xiao, X., Lin, L., Zhang, J., Li, H.: Recurrence network analysis for uncovering dynamic transition of thermo-acoustic instability of supercritical hydrocarbon fuel flow. Aerosp. Sci. Technol. 85, 1–12 (2019). https://doi.org/10.1016/j.ast.2018.11.040

    Article  Google Scholar 

  81. Juniper, M.P., Sujith, R.I.: Sensitivity and nonlinearity of thermoacoustic oscillations. Annu. Rev. Fluid Mech. 50, 661–689 (2018). https://doi.org/10.1146/annurev-fluid-122316-045125

    Article  MathSciNet  Google Scholar 

  82. George, N.B., Unni, V.R., Raghunathan, M., Sujith, R.I.: Pattern formation during transition from combustion noise to thermoacoustic instability via intermittency. J. Fluid Mech. 849, 615–644 (2018). https://doi.org/10.1017/jfm.2018.427

    Article  MathSciNet  Google Scholar 

  83. Kabiraj, L., Sujith, R.I.: Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout. J. Fluid Mech. 713, 376–397 (2012). https://doi.org/10.1017/jfm.2012.463

    Article  MathSciNet  Google Scholar 

  84. Baraiya, N.A., Chakravarthy, S.R.: Syngas combustion dynamics in a bluff-body turbulent combustor. Presented at the (2020)

  85. Kelman, J.B., Masri, A.R.: Quantitative technique for imaging mixture fraction, temperature, and the hydroxyl radical in turbulent diffusion flames. Appl. Opt. 36, 3506 (1997). https://doi.org/10.1364/AO.36.003506

    Article  Google Scholar 

  86. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys Rev A (Coll Park). 33, 1134–1140 (1986). https://doi.org/10.1103/PhysRevA.33.1134

    Article  MathSciNet  Google Scholar 

  87. Eckmann, J.-P., Kamphorst, S.O., Ruelle, D.: Recurrence plots of dynamical systems. Europhysics Letters (EPL). 4, 973–977 (1987). https://doi.org/10.1209/0295-5075/4/9/004

    Article  Google Scholar 

  88. Webber, C. L., Zbilut, J. P.: Recurrence Quantification Analysis of Nonlinear Dynamical Systems. In M. Riley, & G. Van Orden (Eds.), Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences (pp. 26-94). USA: National Science Foundation (2005)

  89. Cao, L.: Practical method for determining the minimum embedding dimension of a scalar time series. Physica D 110, 43–50 (1997). https://doi.org/10.1016/S0167-2789(97)00118-8

    Article  Google Scholar 

  90. R Core Team R: a language and environment for statistical computing. R Core Team: Vienna, Austria (2020)

  91. Garcia C (2022). _nonlinearTseries: Nonlinear Time Series Analysis_. R package version 0.2.12. https://CRAN.R-project.org/package=nonlinearTseries

  92. Yang, H.: Tool box of recurrence plot and recurrence quantification analysis (2023). (https://www.mathworks.com/matlabcentral/fileexchange/58246-tool-box-of-recurrence-plot-and-recurrencequantification-analysis), MATLAB Central File Exchange. Retrieved 10 May 2023

  93. Chen, Y., Yang, H.: Multiscale recurrence analysis of long-term nonlinear and nonstationary time series. Chaos Solitons Fractals 45, 978–987 (2012). https://doi.org/10.1016/j.chaos.2012.03.013

    Article  Google Scholar 

  94. Meyers, A., Buqammaz, M., Yang, H.: Cross-recurrence analysis for pattern matching of multidimensional physiological signals. Chaos: An Interdiscip. J. Nonlinear Sci. (2020). https://doi.org/10.1063/5.0030838

    Article  Google Scholar 

  95. Baraiya, N.A., Chakravarthy, S.R.: The role of mean flame anchoring on the stability characteristics of syngas, synthesis natural gas, and hydrogen fuels in a turbulent non-premixed bluff-body combustor. In: Volume 4B: Combustion, Fuels, and Emissions. American Society of Mechanical Engineers (2019)

Download references

Funding

The authors gratefully acknowledge Vikram Ramanan, N. Baladanadayuthapani and Chetankumar S. Vegad for their constant support throughout this work. N.A. Baraiya thanks the Indian Space Research Organization for supporting this work (Grant Code No. ISRO/RES/3/942/23-24). N. A. Baraiya is also indebted to SVNIT Surat, India for its support through the Institute grant (Grant Code No. 202021/Seed Money/13).

Author information

Authors and Affiliations

Authors

Contributions

S.J. - wrote the manuscript and analysis of results, P.S.—analysis of results N.A.B.—data collection, the main conceptual ideas and proof outline S.K.—analysis and interpretation of results S.R.C—Supervised.

Corresponding author

Correspondence to Nikhil A. Baraiya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jatoliya, S., Singh, P., Baraiya, N.A. et al. Experimental study of transition in dynamical states of thermo-acoustic oscillations in a turbulent bluff body combustor. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09685-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09685-7

Keywords

Navigation