Skip to main content
Log in

Acaricidal efficacy of Calotropis procera (Asclepiadaceae) and Taraxacum officinale (Asteraceae) against Rhipicephalus microplus from Mardan, Pakistan

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Medicinal plants are used by traditional folk healers, modern physicians, and veterinarians as an alternative to conventional drugs to treat a wide range of disorders including parasitic diseases. Some compounds from these plants have been shown to have acaricidal activity and repel arthropods. The cattle tick Rhipicephalus microplus is one of the most destructive pests to the livestock industry in tropical and subtropical parts of the world. The potential to develop herbal acaricides to control R. microplus infestations is critical in maintaining cattle herd productivity, reducing economic losses, and curtailing the overuse of synthetic chemical acaricides. Calotropis procera, the apple of Sodom, and Taraxacum officinale, the common dandelion, were evaluated for acaricidal activity against R. microplus larvae and adults in vitro. Both plant species tested are common indigenous species of Pakistan where R. microplus infestations are widespread across livestock species including cattle, sheep, and goats. Whole-plant extracts derived from C. procera and T. officinale significantly reduced the index of egg laying (P < 0.01) and increased the percent inhibition of oviposition of adult female ticks at a concentration of 40 mg/mL when assessed by the adult immersion test (AIT). Calotropis procera and T. officinale treatments at the same concentration also resulted in larval mortality of 96.0% ± 0.57 and 96.7% ± 0.88, respectively, as measured using the larval packet test (LPT). An increasing range of extract concentrations was tested to determine the LD50 and LD90 for C. procera, 3.21 and 21.15 mg/mL, respectively, and T. officinale, 4.04 and 18.92 mg/mL, respectively. These results indicate that further studies are warranted to determine the relative contribution of individual phytochemicals from whole-plant extracts on acaricidal activity. This information will guide the design of further acaricidal efficacy tests using livestock infested with R. microplus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbas RZ, Zaman MA, Colwell DD, Gilleard J, Iqbal Z (2014) Acaricide resistance in cattle ticks and approaches to its management: the state of play. Vet Parasitol 203(1–2):6–20

    Article  CAS  PubMed  Google Scholar 

  • Adenubi O, Fasina F, McGaw L, Eloff J, Naidoo V (2016) Plant extracts to control ticks of veterinary and medical importance: a review. S Afr J Bot 105:178–193

    Article  Google Scholar 

  • Adjanohoun EJ, Adjakidje V, Ahyi MRA (1989) Contribution aux études ethnobotaniques et floristiques en République Populaire du Bénin. Agence de Cooperation Culturelle et Technique, pp 55–63

  • Akashi T, Furuno T, Takahashi T, Ayabe SI (1994) Biosynthesis of triterpenoids in cultured cells and regenerated and wild plant organs of Taraxacum officinale. Phytochemistry 36:303–308

    Article  CAS  Google Scholar 

  • Al-Rajhy DH, Alahmed AM, Hussein HI, Kheir SM (2003) Acaricidal effects of cardiac glycosides, azadirachtin and neem oil against the camel tick, Hyalomma dromedarii (Acari: Ixodidae). Pest Manag Sci 59(11):1250–1254

    Article  CAS  PubMed  Google Scholar 

  • Al-Taweel AM, Perveen S, Fawzy GA, Rehman AU, Khan A, Mehmood R, Fadda LM (2017) Evaluation of antiulcer and cytotoxic potential of the leaf, flower, and fruit extracts of Calotropis procera and isolation of a new lignan glycoside. Evid-Based Complement Altern Med. https://doi.org/10.1155/2017/8086791

    Article  Google Scholar 

  • Aziz MA, Khan AH, Adnan M, Ullah H (2018) Traditional uses of medicinal plants used by Indigenous communities for veterinary practices at Bajaur Agency, Pakistan. J Ethnobiol Ethnomed 14(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  • Benelli G, Pavela R (2018) Repellence of essential oils and selected compounds against ticks—a systematic review. Acta Trop 179:47–54

    Article  CAS  PubMed  Google Scholar 

  • Broglio-Micheletti SM, Valente EC, de Souza LA, Dias Nda S, de Araujo AM (2009) Plant extracts in control of Rhipicephalus (Boophilus) microplus (Canestrini, 1887) (Acari: Ixodidae) in laboratory]. Rev Bras Parasitol Vet 18(4):44–48

    Article  PubMed  Google Scholar 

  • Cfiungsamarnyart N, Jiwajinda S (1991) Larvicidal effect of Piani crude-extracts on the tropical cattle tick (Boophilus microplus)

  • Chaudhry Z, Suleman M, Younus M, Aslim A (2010) Molecular detection of Babesia bigemina and Babesia bovis in crossbred carrier cattle through PCR. Pak J Zool 42(2):201–204

    CAS  Google Scholar 

  • Costa-Júnior LM, Miller RJ, Alves PB, Blank AF, Li AY, de León AAP (2016) Acaricidal efficacies of Lippia gracilis essential oil and its phytochemicals against organophosphate-resistant and susceptible strains of Rhipicephalus (Boophilus) microplus. Vet Parasitol 228:60–64

    Article  CAS  PubMed  Google Scholar 

  • de León AAP (2017) Integrated tick management: challenges and opportunities to mitigate tick-borne disease burden. Rev Colomb Cienc Pecu 30:280–285

    Google Scholar 

  • de Oliveira JL, Campos EVR, Fraceto LR (2018) Recent developments and challenges for nanoscale formulation of botanical pesticides for use in sustainable agriculture. J Agric Food Chem 66(34):8898–8913

    Article  CAS  Google Scholar 

  • Dias DA, Urban S, Roessner U (2012) A historical overview of natural products in drug discovery. Metabolites 2(2):303–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DjenontinTindo S, Amusant N, Dangou J, Wotto DV, Avlessi F, Dahouénon-Ahoussi E, Lozano P, Pioch D, Sohounhloué KCD (2012) Screening of repellent, termiticidal and preventive activities on wood of Azadirachtaindica and Carapaprocera (Meliaceae) seeds oils. J Biol Sci 1(3):25–29

    Google Scholar 

  • Domingues RM, Domingues P, Melo T, Perez-Sala D, Reis A, Spickett CM (2013) Lipoxidation adducts with peptides and proteins: deleterious modifications or signaling mechanisms? J Proteom 9:110–131

    Article  CAS  Google Scholar 

  • Drummond R, Ernst S, Trevino J, Gladney W, Graham O et al (1973) Boophilus annulatus and B. microplus: laboratory tests of insecticides. J Econ Entomol 66(1):130–133

    Article  CAS  PubMed  Google Scholar 

  • Elango G, Rahuman AA (2011) Evaluation of medicinal plant extracts against ticks and fluke. Parasitol Res 108(3):513–519

    Article  PubMed  Google Scholar 

  • Estrada-Peña A, Bouattour A, Camicas JL, Guglielmone A, Horak I, Jongejan F, Latif A, Pegram R, Walker A (2006) The known distribution and ecological preferences of the tick subgenus Boophilus (Acari: Ixodidae) in Africa and Latin America. Exp Appl Acarol 38(2–3):219–235

    Article  PubMed  Google Scholar 

  • FAO (1971) Recommended methods for the detection and measurement of resistance of agricultural pests to pesticides—tentative method for larvae of cattle ticks, Boophilus microplus spp. FAO method No. 7. FAO Plant Prot Bull 19:15–18

    Google Scholar 

  • FAO (2004) Resistance management and integrated parasite control in ruminants. Guidelines. Animal Production and Health Division, Rome, pp 25–77

    Google Scholar 

  • Finney DJ, Tattersfield F (1952) Probit analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Gazim ZC, Demarchi IG, Lonardoni MV, Amorim AC, Hovell AM, Rezende CM, Ferreira GA, de Lima EL, de Cosmo FA, Cortez DA (2011) Acaricidal activity of the essential oil from Tetradenia riparia (Lamiaceae) on the cattle tick Rhipicephalus (Boophilus) microplus (Acari; Ixodidae). Exp Parasitol 129(2):175–178

    Article  CAS  PubMed  Google Scholar 

  • George DR, Finn RD, Graham KM, Sparagano OA (2014) Present and future potential of plant-derived products to control arthropods of veterinary and medical significance. Parasit Vectors 7(1):28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Bansal GC, Gupta SC, Ray D, Khan MQ, Irshad H, Shahiduzzaman M, Seitzer U, Ahmed JS (2007) Status of tick distribution in Bangladesh, India and Pakistan. Parasitol Res 101(2):207–216

    Article  Google Scholar 

  • Ghosh S, Sharma AK, Kumar S, Tiwari SS, Rastogi S, Srivastava S, Singh M, Kumar R, Paul S, Ray DD, Rawat AK (2011) In vitro and in vivo efficacy of Acorus calamus extract against Rhipicephalus (Boophilus) microplus. Parasitol Res 108(2):361–370

    Article  PubMed  Google Scholar 

  • Ghosh S, Tiwari SS, Srivastava S, Sharma AK, Kumar S, Ray DD, Rawat AK (2013) Acaricidal properties of Ricinus communis leaf extracts against organophosphate and pyrethroids resistant Rhipicephalus (Boophilus) microplus. Vet Parasitol 192(1–3):259–267

    Article  PubMed  Google Scholar 

  • Gray JS, Estrada-Peña A, Zintl A (2019) Vectors of babesiosis. Annu Rev Entomol 64:149–165

    Article  CAS  PubMed  Google Scholar 

  • Grisi L, Leite RC, Martins JRS, Barros ATM, Andreotti R, Cançado PHD, León AAP, Pereira JB, Villela HS (2014) Reassessment of the potential economic impact of cattle parasites in Brazil. Rev Bras Parasitol Vet 23(2):150–156

    Article  Google Scholar 

  • Habeeb SM (2010) Ethno-veterinary and medical knowledge of crude plant extracts and its methods of application (traditional and modern) for tick control. World Appl Sci J 11(9):1047–1054

    Google Scholar 

  • Hemingway J, Boddington RG, Harris J (1989) Mechanisms of insecticide resistance in Aedes aegypti (L.) (Díptera: Culicidae) from Puerto Rico. Bull Ent Res 79:123–130

    Article  CAS  Google Scholar 

  • Hu C, Kitts DD (2005) Dandelion (Taraxacum officinale) flower extract suppresses both reactive oxygen species and nitric oxide and prevents lipid oxidation in vitro. Phytomedicine 12(8):588–597

    Article  CAS  PubMed  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  CAS  PubMed  Google Scholar 

  • Jyoti J, Kour S (2015) Assessing the cultural intelligence and task performance equation: mediating role of cultural adjustment. Cross Cult Manag 22(2):236–258

    Article  Google Scholar 

  • Kalakumar B, Kumar HSA, Kumar BA, Reddy KS (2000) Evaluation of custard seed oil and neem oil as acaricides. J Vet Parasitol 14(2):171–172

    Google Scholar 

  • Kisiel WBB (2000) Further sesquiterpenoids and phenolics from Taraxacum officinale. Fitoterapia 71:269–273

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Dewan S, Sangraula H, Kumar V (2001) Anti-diarrheal activity of the latex of Calotropis procera. J Ethnopharmacol 76(1):115–118

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Sharma AK, Ray D, Ghosh S (2014) Determination of discriminating dose and evaluation of amitraz resistance status in different field isolates of Rhipicephalus (Boophilus) microplus in India. Exp Appl Acarol 63(3):413–422

    Article  PubMed  Google Scholar 

  • Lázaro SF, Fonseca LD, Martins ER, de Oliveira NJF, Duarte ER (2013) Effect of aqueous extracts of Baccharis trimera on development and hatching of Rhipicephalus microplus (Acaridae) eggs. Vet Parasitol 194(1):79–82

    Article  PubMed  Google Scholar 

  • Li YC, Shen JD, Li YY, Huang Q (2014) Antidepressant effects of the water extract from Taraxacum officinale leaves and roots in mice. Pharm Biol 52(8):1028–1032

    Article  PubMed  Google Scholar 

  • Luguru S, Banda D, Pegram R (1984) Susceptibility of ticks to acaricides in Zambia. Trop Anim Health Prod 16(1):21–26

    Article  CAS  PubMed  Google Scholar 

  • Mir MA, Sawhney SS, Jassal MMS (2013) Qualitative and quantitative analysis of phytochemicals of Taraxacum officinale. Wudpecker J Pharm Pharmocol 2(1):1–5

    CAS  Google Scholar 

  • Neelum A, Khan M (2017) Economics of milk production in District Mardan, Khyber Pakhtunkhwa (KP), Pakistan. Sarhad J. Agric 33(1):42–46

    Article  Google Scholar 

  • Patil CD, Patil SV, Borase HP, Salunke BK, Salunkhe RB (2012) Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol Res 110(5):1815–1822

    Article  PubMed  Google Scholar 

  • Pavela R, Chermenskaya T (2004) Potential insecticidal activity of extracts from 18 species of medicinal plants on larvae of Spodoptera littoralis. Plant Prot Sci 40(4):145–150

    Article  Google Scholar 

  • Prakash B, Kujur A, Yadav A, Kumar A, Singh PP, Dubey NK (2018) Nanoencapsulation: an efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control 89:1–11

    Article  CAS  Google Scholar 

  • Rasik A, Raghubir R, Gupta A, Shukla A, Dubey M, Srivastava S, Jain H, Kulshrestha D (1999) Healing potential of Calotropis procera on dermal wounds in Guinea pigs. J Ethnopharmacol 68(1–3):261–266

    Article  CAS  PubMed  Google Scholar 

  • Ravindran R, Ramankutty SA, Juliet S, Palayullaparambil AKT, Gopi J, Gopalan AKK, Nair SN, Ghosh S (2014) Comparison of in vitro acaricidal effects of commercial preparations of cypermethrin and fenvalerate against Rhipicephalus (Boophilus) annulatus. SpringerPlus 3(1):90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Vivas R, Rodriguez-Arevalo F, Alonso-Díaz M, Fragoso-Sanchez H, Santamaria V, Rosario-Cruz R (2006) Prevalence and potential risk factors for amitraz resistance in Boophilus microplus ticks in cattle farms in the State of Yucatan, Mexico. Prev Vet Med 75(3–4):280–286

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Vivas RI, Jonsson NN, Bhushan C (2018) Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitol Res 117(1):3–29

    Article  PubMed  Google Scholar 

  • Sargazi Z, Nikravesh MR, Jalali M, Sadeghnia HR, Rahimi Anbarkeh F, Mohammadzadeh L (2014) Diazinon-induced ovarian toxicity and protection by vitamins E. Iran J Toxicol 8(26):1130–1135

    CAS  Google Scholar 

  • Schutz K, Carle R, Schieber A (2006) Taraxacum–a review on its phytochemical and pharmacological profile. J Ethnopharmacol 107(3):313–323

    Article  CAS  PubMed  Google Scholar 

  • Shyma KP, Kumar S, Sharma AK, Ray DD, Ghosh S (2012) Acaricide resistance status in Indian isolates of Hyalomma anatolicum. Exp Appl Acarol 58(4):471–481

    Article  CAS  PubMed  Google Scholar 

  • Shyma K, Gupta J, Ghosh S, Patel K, Singh V (2014) Acaricidal effect of herbal extracts against cattle tick Rhipicephalus (Boophilus) microplus using in vitro studies. Parasitol Res 113(5):1919–1926

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Kumari S, Attri R, Kumar S (2015) Impact of Calotropis procera leaf extracts on the survival, morphology and behaviour of dengue vector, Aedes aegypti L. DU. J Under Res Innov 1:96–107

    Google Scholar 

  • Singh NK, Miller RJ, Klafke GM, Goolsby JA, Thomas DB, de Leon AAP (2018) In-vitro efficacy of a botanical acaricide and its active ingredients against larvae of susceptible and acaricide-resistant strains of Rhipicephalus (Boophilus) microplus Canestrini (Acari: Ixodidae). Ticks Tick-Borne Dis 9(2):201–206

    Article  PubMed  Google Scholar 

  • Verma R, Satsangi G, Shrivastava J (2013) Analysis of phytochemical constituents of the ethanolic and chloroform extracts of Calotropis procera using gas chromatography-mass spectroscopy (GC-MS) technique. J Med Plants Res 7(40):2986–2991

    CAS  Google Scholar 

  • Walker AR, Bouattour A, Camicas JL, Estrada-Peña A, Horak IG, Latif AA, Pegram RG, Preston PM (2007) Ticks of domestic animals in Africa: a guide to identification of species. University of Edinburgh, Edinburgh, pp 149–164

    Google Scholar 

  • Wanzala W (2017) Potential of traditional knowledge of plants in the management of arthropods in livestock industry with focus on (Acari) ticks. Evid-Based Complement Altern Med. https://doi.org/10.1155/2017/8647919

    Article  Google Scholar 

  • Zaman MA, Iqbal Z, Abbas RZ, Khan MN, Muhammad G, Younus M, Ahmed S (2012) In vitro and in vivo acaricidal activity of a herbal extract. Vet Parasitol 186(3–4):431–436

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AK, RDM, and AAPL wrote the manuscript. SN, SA, and AK designed the project. HN, IM, NN, and FS collected tick samples, identified tick species collected, and performed laboratory assays. SK performed plant identification and extractions.

Corresponding author

Correspondence to Adil Khan.

Ethics declarations

Conflict of interest

The authors declared that there are no conflicts of interest among them.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Nasreen, N., Niaz, S. et al. Acaricidal efficacy of Calotropis procera (Asclepiadaceae) and Taraxacum officinale (Asteraceae) against Rhipicephalus microplus from Mardan, Pakistan. Exp Appl Acarol 78, 595–608 (2019). https://doi.org/10.1007/s10493-019-00406-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-019-00406-z

Keywords

Navigation