Skip to main content

Advertisement

Log in

Spider foraging strategies dominate pest suppression in organic tea plantations

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Organic management of crops generally leads to greater predator richness. However conservation of natural enemy species richness does not consistently strengthen herbivore suppression. Here we explored relationships between abundance and diversity of predatory spiders with two distinct foraging strategies and their prey, leafhopper pests. In three organic tea plantations, we investigated abundance of these spiders, and population dynamics of an important tea green leafhopper pest, Empoasca vitis (Homoptera: Cicadellidae). We found that abundance and diversity of actively hunting spiders were significantly negatively correlated with leafhopper pest populations, but sit-and-wait spiders were not. The latter may have been limited by intraguild predation or other trophic interactions. Furthermore, there was no significant correlation between total spider and leafhopper numbers. Our study thus suggests that predator foraging strategy might be a key functional trait that can help to explain variation in pest suppression in agricultural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Cardoso P, Pekár S, Jocqué R, Coddington JA (2011) Global patterns of guild composition and functional diversity of spiders. PLoS ONE 6:e21710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chalcraft DR, Resetarits WJ (2003) Predator identity and ecological impacts: functional redundancy or functional diversity? Ecology 84:2407–2418

    Article  Google Scholar 

  • Cresswell W, Lind J, Quinn JL (2010) Predator-hunting success and prey vulnerability: quantifying the spatial scale over which lethal and non-lethal effects of predation occur. J Anim Ecol 79:556–562

    Article  PubMed  Google Scholar 

  • Faith DP, Minchin PR, Belbin L (1987) Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69:57–68

    Article  Google Scholar 

  • Finke DL, Denno RF (2004) Predator diversity dampens trophic cascades. Nature 429:407–410

    Article  CAS  PubMed  Google Scholar 

  • Flohre A, Fischer C, Aavik T, Bengtsson J, Berendse F, Bommarco R, Ceryngier P, Clement LW, Dennis C, Eggers S, Emmerson M, Geiger F, Guerrero I, Hawro V, Inchausti P, Liira J, Morales MB, Onate JJ, Part T, Weisser WW, Winqvist C, Thies C, Tscharntke T (2011) Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds. Ecol Appl 21:1772–1781

    Article  PubMed  Google Scholar 

  • Gardiner MM, Landis DA, Gratton C, DiFonzo CD, O’Neal M, Chacon JM, Wayo MT, Schmidt NP, Mueller EE, Heimpel GE (2009a) Landscape diversity enhances biological control of an introduced crop pest in the north-central USA. Ecol Applic 19:143–154

    Article  CAS  Google Scholar 

  • Gardiner MM, Landis DA, Gratton C, Schmidt NP, O’Neal M, Mueller EE, Chacon JM, Heimpel GE, DiFonzo CD (2009b) Landscape composition influences patterns of native and exotic lady beetle abundance. Divers Distrib 15:554–564

    Article  Google Scholar 

  • Griffin JN, Byrnes JEK, Cardinale BJ (2013) Effects of predator richness on prey suppression: a meta-analysis. Ecology 94:2180–2187

    Article  PubMed  Google Scholar 

  • Hillstrom ML, Lindroth RL (2008) Elevated atmospheric carbon dioxide and ozone alter forest insect abundance and community composition. Insect Conserv Diver 1:233–241

    Article  Google Scholar 

  • Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev 80:489–513

    Article  PubMed  Google Scholar 

  • Hu KM, She YP, Zhu QZ, Wang JF (2005) Long-term changes of tea green leafhopper in tea gardens of southern Yunnan. Subtrop Agric Res 1:49–52

    Google Scholar 

  • Huey RB, Pianka ER (1981) Ecological consequences of foraging mode. Ecology 62:991–999

    Article  Google Scholar 

  • Letourneau DK, Jedlicka JA, Bothwell SG, Moreno CR (2009) Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annu Rev Ecol Evol Syst 40:573–592

    Article  Google Scholar 

  • Macfadyen S, Gibson R, Polaszek A, Morris RJ, Craze PG, Planque R, Symondson WOC, Memmott J (2009) Do differences in food web structure between organic and conventional farms affect the ecosystem service of pest control? Ecol Lett 12:229–238

    Article  PubMed  Google Scholar 

  • Murphy F, Murphy J (2000) An introduction to the spiders of south east Asia. United Selangor Press Sdn. Bhd, Selangor

    Google Scholar 

  • Novotny V (1994) Association of polyphagy in leafhoppers (Auchenorrhyncha, Hemiptera) with unpredictable environments. Oikos 70:223–232

    Article  Google Scholar 

  • Östman O (2004) The relative effects of natural enemy abundance and alternative prey abundance on aphid predation rates. Biol Control 30:281–287

    Article  Google Scholar 

  • Paredes D, Cayuela L, Gurr GM, Campos M (2015) Single best species or natural enemy assemblages? A correlational approach to investigating ecosystem function. BioControl 60:37–45

    Article  Google Scholar 

  • Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and community composition. Ecol Lett 5:402–411

    Article  Google Scholar 

  • Poveda K, Martínez E, Kersch-Becker MF, Bonilla MA, Tscharntke T (2012) Landscape simplification and altitude affect biodiversity, herbivory and Andean potato yield. J Appl Ecol 49:513–522

    Article  Google Scholar 

  • R Development Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available online at: http://www.R-project.org

  • Rand TA, van Veen FJF, Tscharntke T (2012) Landscape complexity differentially benefits generalized fourth, over specialized third, trophic level natural enemies. Ecography 35:97–104

    Article  Google Scholar 

  • Rasmann S, Pellissier L, Defossez E, Jactel H, Kunstler G (2014) Climate-driven change in plant–insect interactions along elevation gradients. Funct Ecol 28:46–54

    Article  Google Scholar 

  • Riechert SE, Lockley T (1984) Spiders as biological-control agents. Annu Rev Entomol 29:299–320

    Article  Google Scholar 

  • Rusch A, Bommarco R, Chiverton P, Oberg S, Wallin H, Wiktelius S, Ekbom B (2013) Response of ground beetle (Coleoptera, Carabidae) communities to changes in agricultural policies in Sweden over two decades. Agric Ecosyst Environ 176:63–69

    Article  Google Scholar 

  • Schmitz OJ (2008) Effects of predator hunting mode on grassland ecosystem function. Science 319:952–954

    Article  CAS  PubMed  Google Scholar 

  • Schmitz OJ (2009) Effects of predator functional diversity on grassland ecosystem function. Ecology 90:2339–2345

    Article  PubMed  Google Scholar 

  • Schmitz OJ, Barton BT (2014) Climate change effects on behavioral and physiological ecology of predator–prey interactions: implications for conservation biological control. Biol Control 75:87–96

    Article  Google Scholar 

  • Schmitz OJ, Suttle KB (2001) Effects of top predator species on direct and indirect interactions in a food web. Ecology 82:2072–2081

    Article  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Labs Tech J 27:623–656

    Article  Google Scholar 

  • Snyder WE, Chang GC, Prasad RP (2005) Conservation biological control: Biodiversity influences the effectiveness of predators. In: Barbosa P, Castellanos I (eds) Ecology of predator-prey interactions. Oxford University Press, New York, pp 324–343

    Google Scholar 

  • Straub CS (2006) Exploring the relationship between natural enemy biodiversity and herbivore suppression. Ph.D. Dissertation. Department of Entomology. Washington State University, Pullman

  • Straub CS, Snyder WE (2006) Species identity dominates the relationship between predator biodiversity and herbivore suppression. Ecology 87:277–282

    Article  PubMed  Google Scholar 

  • Straub CS, Finke DL, Snyder WE (2008) Are the conservation of natural enemy biodiversity and biological control compatible goals? Biol Control 45:225–237

    Article  Google Scholar 

  • Ye HX, Cui L, He XM, Han BY (2010) Effect of intercropping tea with citrus, waxberry, or snake gourd on population density and spatial distribution of the tea green leafhopper and araneids. Acta Ecol Sinica 30:6019–6026

    Google Scholar 

Download references

Acknowledgments

We thank Gan Wenjin, Li Qiaoshun, Chen Zhiling, Hou Guoyan, Li Yonggang and Wang Jin for helping field and lab work. We appreciate the support from Long Sheng of Yunnan Incorporated Company. This work was supported by the National Science Foundation of China (NSFC) grant # 41271278 and the CAS 135 program (XTBG-T01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Chen or Xiaodong Yang.

Additional information

Handling Editor: Marta Montserrat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Li, Z., Sui, Y. et al. Spider foraging strategies dominate pest suppression in organic tea plantations. BioControl 60, 839–847 (2015). https://doi.org/10.1007/s10526-015-9691-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-015-9691-2

Keywords

Navigation