Skip to main content
Log in

Changing distributions of ticks: causes and consequences

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Today, we are witnessing changes in the spatial distribution and abundance of many species, including ticks and their associated pathogens. Evidence that these changes are primarily due to climate change, habitat modifications, and the globalisation of human activities are accumulating. Changes in the distribution of ticks and their invasion into new regions can have numerous consequences including modifications in their ecological characteristics and those of endemic species, impacts on the dynamics of local host populations and the emergence of human and livestock disease. Here, we review the principal causes for distributional shifts in tick populations and their consequences in terms of the ecological attributes of the species in question (i.e. phenotypic and genetic responses), pathogen transmission and disease epidemiology. We also describe different methodological approaches currently used to assess and predict such changes and their consequences. We finish with a discussion of new research avenues to develop in order to improve our understanding of these host–vector–pathogen interactions in the context of a changing world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adriaenssens V, Goethals PLM, de Pauw N (2006) Fuzzy knowledge-based models for prediction of Asellus and Gammarus in watercourses in Flanders (Belgium). Ecol Model 195:3–10

    Article  Google Scholar 

  • Allan BF, Keesing F, Ostfeld RS (2003) Effect of forest fragmentation on Lyme disease risk. Conserv Biol 17:267–272

    Article  Google Scholar 

  • Allan BF, Goessling LS, Storch GA, Thach RE (2010) Blood meal analysis to identify reservoir hosts for Amblyomma americanum ticks. Emerg Infect Dis 16:433–440

    Article  PubMed  CAS  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Bacon RM, Kugeler KJ, Griffith KS, Mead PS (2008) Surveillance for Lyme disease—United States, 1992–2006. Morb Mortal Wkly Rep 56:1–9

    Google Scholar 

  • Barré N, Garris GI (1990) Biology and ecology of Amblyomma variegatum (Acari: Ixodidae) in the Caribbean: implications for a regional eradication program. J Agric Entomol 7:1–9

    Google Scholar 

  • Barré N, Uilenberg G (2010) Spread of parasites transported with their hosts: case study of two species of cattle tick. Rev Sci Tech Off Int Epiz 29:149–160

    Google Scholar 

  • Barré N, Garris GI, Camus E (1995) Propagation of the tick Amblyomma variegatum in the Caribbean. Rev Sci Tech Off Int Epiz 14:841–855

    Google Scholar 

  • Barré N, Bianchi M, Chardonnet L (2001) Role of rusa deer Cervus timorensis rusa in the cycle of the cattle tick Boophilus microplus in New Caledonia. Exp Appl Acarol 25:79–96

    Article  PubMed  Google Scholar 

  • Bennett J (2004) Pests and diseases in the Pacific War: crossing the line. In: Tucker R, Russel E (eds) Natural ally: toward an environment history of warfare. Oregon State University Press, Corvallis, pp 217–251

    Google Scholar 

  • Beugnet F, Chardonnet L (1995) Tick resistance to pyrethroids in New-Caledonia. Vet Parasitol 56:325–338

    Article  PubMed  CAS  Google Scholar 

  • Beugnet F, Marié JL (2009) Emerging arthropod-borne diseases of companion animals in Europe. Vet Parasitol 163:298–305

    Article  PubMed  Google Scholar 

  • Biello D (2011) Human population reaches 7 billion—how did this happen and can it go on? Scientific American. http://www.scientificamerican.com/article.cfm?id=human-population-reaches-seven-billion

  • Blaustein AR, Belden LK, Olson DH, Green DM, Root TL, Kiesecker JM (2001) Amphibian breeding and climate change. Conserv Biol 15:1804–1809

    Article  Google Scholar 

  • Bock W, Salski A (1998) A fuzzy knowledge-based model of population dynamics of the yellow-necked mouse (Apodemus flavicollis) in a beach forest. Ecol Model 108:155–161

    Article  Google Scholar 

  • Boulinier T, Danchin E (1996) Population trends in kittiwake Rissa tridactyla colonies in relation to tick infestation. Ibis 38:326–334

    Google Scholar 

  • Boyard C, Barnouin J, Gasqui P, Vourc’h G (2007) Local environmental factors characterizing Ixodes ricinus nymph abundance in grazed permanent pastures for cattle. Parasitology 134:987–994

    Article  PubMed  CAS  Google Scholar 

  • Brownstein JS, Holford TR, Fish D (2005) Effect of climate change on Lyme disease risk in North America. EcoHealth 2:38–46

    Article  PubMed  Google Scholar 

  • Brun LO, Wilson JT, Daynes P (1983) Ethion resistance in the cattle tick (Boophilus microplus) in New-Caledonia. Trop Pest Manage 29:16–22

    Article  CAS  Google Scholar 

  • Butler CJ (2003) The disproportionate effect of global warming on the arrival dates of short-distance migratory birds in North America. Ibis 145:484–495

    Article  Google Scholar 

  • Carpi G, Cagnacci F, Neteler M, Rizzoli A (2008) Tick infestation on roe deer in relation to geographic and remotely sensed climatic variables in a tick-borne encephalitis endemic area. Epidemiol Infect 136:1416–1424

    Article  PubMed  CAS  Google Scholar 

  • Centre for Food Security and Public Health (CFSPH) (2007) Rhipicephalus (Boophilus) microplus, southern cattle tick, cattle tick. Iowa State University, Ames. http://www.cfsph.iastate.edu/Factsheets/pdfs/boophilus_microplus.pdf. Accessed on 13th Dec 2010

  • Chevillon C, Ducornez S, de Meeûs T, Koffi BB, Gaia H, Delathiere JM, Barré N (2007) Accumulation of acaricide resistance mechanisms in Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) populations from New Caledonia Island. Vet Parasitol 147:276–288

    Article  PubMed  CAS  Google Scholar 

  • Chevillon C, Barré N, Ducronez S, de Garine-Wichatitsky M, de Meeûs T (2012a) Understanding the genetic, demographical and/or ecological processes at play in invasions: lessons from the southern cattle tick Rhipicephalus microplus (Acari: Ixodidae). Exp Appl Acarol present volume

  • Chevillon C, de Meeûs T, McCoy KD (2012b) Population genetics and epidemiology of infectious diseases. In: Morand S, Beaudeau F, Cabaret J (eds) New frontiers of molecular epidemiology of infectious diseases. Springer, Dordrecht, pp 45–76

    Chapter  Google Scholar 

  • Childs J, Shope RE, Fish D, Meslin FX, Peters CJ, Johnson K, Debess E, Dennis D, Jenkins S (1998) Emerging zoonoses. Emerg Infect Dis 4:453–454

    Article  PubMed  CAS  Google Scholar 

  • Chown SL, Hoffmann AA, Kristensen TN, Angilletta MJ, Stenseth NC, Pertoldi C (2010) Adapting to climate change: a perspective from evolutionary physiology. Clim Res 43:3–15

    Article  Google Scholar 

  • Constantinoiu CC, Jackson LA, Jorgensen WK, Lew-Tabor AE, Piper EK, Mayer DG, Venus B, Jonsson NN (2010) Local immune response against larvae of Rhipicephalus (Boophilus) microplus in Bos taurus indicus and Bos taurus taurus cattle. Int J Parasitol 40:865–875

    Article  PubMed  CAS  Google Scholar 

  • Corn J, Barré N, Thiébot B, Creekmore TE, Garris GI, Nettle VF (1993) A study of the potential role of cattle egrets Bubulcus ibis (Ciconiformes: Ardeidae) in the dissemination of Amblyomma variegatum (Acari: Ixodidae) in the Eastern Caribbean. J Med Entomol 30:1029–1037

    PubMed  CAS  Google Scholar 

  • Corson MS, Teel PD, Grant WE (2001) Influence of acaricide resistance on cattle-fever tick (Boophilus spp.) infestations in semi-arid thornshrublands: a simulation approach. Exp Appl Acarol 25:171–184

    Article  PubMed  CAS  Google Scholar 

  • Corson MS, Teel PD, Grant WE (2003) Simulating detection of cattle-fever tick (Boophilus spp.) infestations in rotational grazing systems. Ecol Model 167:277–286

    Article  Google Scholar 

  • Coulson SJ, Lorentzen E, Strom H, Gabrielsen GW (2009) The parasitic tick Ixodes uriae (Acari: Ixodidae) on seabirds from Spitsbergen, Svalbard. Polar Res 28:399–402

    Article  Google Scholar 

  • Cumming GS (1999) Host distributions do not limit the species ranges of most African ticks (Acari: Ixodida). Bull Entomol Res 89:303–327

    Article  Google Scholar 

  • Cumming GS (2002) Comparing climate and vegetation as limiting factors for species ranges of African ticks. Ecology 83:255–268

    Article  Google Scholar 

  • Cumming GS (2007) Global biodiversity scenarios and landscape ecology. Landsc Ecol 22:671–685

    Article  Google Scholar 

  • Cumming GS, Van Vuuren DP (2006) Will climate change affect ectoparasite species ranges? Global Ecol Biogeogr 15:486–497

    Google Scholar 

  • Cutullé C, Jonnson N, Seddon J (2009) Population structure of Australian isolates of the cattle tick Rhipicephalus (Boophilus) microplus. Vet Parasitol 161:283–291

    Article  PubMed  Google Scholar 

  • Daily GC, Ehrlich PR (1996) Global change and human susceptibility to disease. Annu Rev Energy Env 21:125–144

    Article  Google Scholar 

  • Daniel M (1993) Influence of the microclimate on the vertical distribution of the tick Ixodes ricinus (L.) in central Europe. Acarologia 34:105–113

    Google Scholar 

  • Daniel M, Danielová V, Kriz B, Jirsa A, Nozicka J (2003) Shift of the tick Ixodes ricinus and tick-borne encephalitis to higher altitudes in Central Europe. Eur J Clin Microbiol Infect Dis 22:327–328

    PubMed  CAS  Google Scholar 

  • Danielová V, Rudenko N, Daniel M, Holubová J, Materna J, Golovchenko M, Schwarzová L (2006) Extension of Ixodes ricinus ticks and agents of tick-borne diseases to mountain areas in the Czech Republic. Int J Med Microbiol 296:48–53

    Article  PubMed  Google Scholar 

  • Danielová V, Schwarzová L, Materna J, Daniel M, Metelka L, Holubová J, Kriz B (2008) Tick-borne encephalitis virus expansion to higher altitudes correlated with climate warming. Int J Med Microbiol 298:68–72

    Article  Google Scholar 

  • de Meeûs T, Renaud F (2002) Parasites within the new phylogeny of eukaryotes. Trends Parasitol 18:247–251

    Article  PubMed  Google Scholar 

  • de Meeûs T, Beati L, Delaye C, Aeschlimann A, Renaud F (2002) Sex-biased genetic structure in the vector of Lyme disease, Ixodes ricinus. Evolution 56:1802–1807

    Article  PubMed  Google Scholar 

  • de Meeûs T, McCoy KD, Prugnolle F, Chevillon C, Durand P, Hurtrez-Bousses S, Renaud F (2007) Population genetics and molecular epidemiology or how to ‘debusquer la bête’. Infect Genet Evol 7:308–332

    Article  PubMed  CAS  Google Scholar 

  • de Meeûs T, Koffi BB, Barré N, de Garine-Wichatitsky M, Chevillon C (2010) Swift sympatric adaptation of a species of cattle tick to a new deer host in New Caledonia. Infect Genet Evol 10:976–983

    Article  PubMed  Google Scholar 

  • Diuk-Wasser MA, Vourc’h G, Cislo P, Hoen AG, Melton F, Hamer SA, Rowland M, Cortinas R, Hickling GJ, Tsao JI, Barbour AG, Kitron U, Piesman J, Fish D (2010) Field and climate-based model for predicting the density of host-seeking nymphal Ixodes scapularis, an important vector of tick-borne disease agents in the eastern United States. Global Ecol Biogeogr 19:504–514

    Google Scholar 

  • Ducornez S, Barré N, Miller RJ, de Garine-Wichatitsky M (2005) Diagnosis of amitraz resistance in Boophilus microplus in New Caledonia with the modified Larval Packet Test. Vet Parasitol 130:285–292

    Article  PubMed  CAS  Google Scholar 

  • Eisen L, Eisen RJ, Lane RS (2002) Seasonal activity patterns of Ixodes pacificus nymphs in relation to climatic conditions. Med Vet Entomol 16:235–244

    Article  PubMed  CAS  Google Scholar 

  • Estrada-Peña A (2001) Climate warming and changes in habitat suitability for Boophilus microplus (Acari: Ixodidae) in Central America. J Parasitol 87:978–987

    PubMed  Google Scholar 

  • Estrada-Peña A (2002) Increasing habitat suitability in the United States for the tick that transmits Lyme disease: a remote sensing approach. Environ Health Perspect 110:635–640

    Article  PubMed  Google Scholar 

  • Estrada-Peña A (2008) Climate, niche, ticks, and models: what they are and how we should interpret them. Parasitol Res 103:S87–S95

    Article  PubMed  Google Scholar 

  • Estrada-Peña A, Venzal JM (2006) Changes in habitat suitability for the tick Ixodes ricinus (Acari: Ixodidae) in Europe (1900–1999). EcoHealth 3:154–162

    Article  Google Scholar 

  • Estrada-Peña A, Martinez JM, Acedo CS, Quilez J, Del Cacho E (2004) Phenology of the tick, Ixodes ricinus, in its southern distribution range (central Spain). Med Vet Entomol 18:387–397

    Article  PubMed  Google Scholar 

  • Estrada-Peña A, Sánchez-Acedo C, Quilez J, Del Cacho E (2005) A retrospective study of climatic suitability for the tick Rhipicephalus (Boophilus) microplus in the Americas. Global Ecol Biogeogr 14:565–573

    Article  Google Scholar 

  • Estrada-Peña A, Pegram RG, Barre N, Venzal JM (2007a) Using invaded range data to model the climate suitability for Amblyomma variegatum (Acari: Ixodidae) in the New World. Exp Appl Acarol 41:203–214

    Article  PubMed  Google Scholar 

  • Estrada-Peña A, Zatansever Z, Gargili A, Aktas M, Uzun R, Ergonul O, Jongejan F (2007b) Modeling the spatial distribution of Crimean-Congo hemorrhagic fever outbreaks in Turkey. Vector Borne Zoonotic Dis 7:667–678

    Article  PubMed  Google Scholar 

  • Estrada-Peña A, Horak IG, Petney T (2008) Climate changes and suitability for the ticks Amblyomma hebraeum and Amblyomma variegatum (Ixodidae) in Zimbabwe (1974–1999). Vet Parasitol 151:256–267

    Article  PubMed  Google Scholar 

  • Estrada-Peña A, Martínez Avilés M, Muñoz Reoyo MJ (2011) A population model to describe the distribution and seasonal dynamics of the tick Hyalomma marginatum in the Mediterranean Basin. Transbound Emerg Dis 58:213–223

    Article  PubMed  Google Scholar 

  • Falco RC, Fish D (1991) Horizontal movement of adult Ixodes Dammini (Acari, Ixodidae) attracted to CO2-baited traps. J Med Entomol 28:726–729

    PubMed  CAS  Google Scholar 

  • Fayer R (2000) Global change and emerging infectious diseases. J Parasitol 86:1174–1181

    PubMed  CAS  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Article  PubMed  CAS  Google Scholar 

  • Fries BC, Mayer J (2009) Climate change and infectious disease. Interdiscip Perspect Infect Dis 2009. doi:10.1155/2009/976403

  • Frisch J (1999) Towards a permanent solution for controlling cattle tick. Int J Parasitol 29:57–71

    Article  PubMed  CAS  Google Scholar 

  • Gern L, Morán-Cadenas F, Burri C (2008) Influence of some climatic factors on Ixodes ricinus ticks studied along altitudinal gradients in two geographic regions in Switzerland. Int J Med Microbiol 298:55–59

    Article  Google Scholar 

  • Gething PW, Smith DL, Patil AP, Tatem AJ, Snow RW, Hay SI (2010) Climate change and the global malaria recession. Nature 465:342–345

    Article  PubMed  CAS  Google Scholar 

  • Gilbert L (2010) Altitudinal patterns of tick and host abundance: a potential role for climate change in regulating tick-borne diseases? Oecologia 162:217–225

    Article  PubMed  Google Scholar 

  • Gilot B, Perez-Eid C (1998) Bioecology of ticks causing the most important pathology in France. Med Mal Infect 28:325–334

    Article  Google Scholar 

  • Gilot B, Bonnefille M, Degeilh B, Beaucournu JC, Pichot J, Guiguen C (1994) The development of Ixodes ricinus (Linne, 1758) in French forests—the roe-deer, Capreolus capreolus (L, 1758) used as a biological marker. Parasite 1:81–86

    PubMed  CAS  Google Scholar 

  • Githeko AK, Lindsay SW, Confalonieri UE, Patz JA (2000) Climate change and vector-borne diseases: a regional analysis. Bull WHO 78:1136–1147

    PubMed  CAS  Google Scholar 

  • Gómez-Díaz E, Doherty PF, Duneau D, McCoy KD (2010) Cryptic vector divergence masks vector-specific patterns of infection: an example from the marine cycle of Lyme borreliosis. Evol Appl 3:391–401

    Article  Google Scholar 

  • Gómez-Díaz E, Boulinier T, Sertour N, Cornet M, Ferquel E, McCoy KD (2011) Genetic structure of marine Borrelia garinii and population admixture with the terrestrial cycle of Lyme borreliosis. Environ Microbiol 13:2453–2467

    Article  PubMed  Google Scholar 

  • Gray JS (1991) The development and seasonal activity of the tick, Ixodes ricinus: a vector of Lyme borreliosis. Rev Med Vet Entomol 79:323–333

    Google Scholar 

  • Gray JS (1998) The ecology of ticks transmitting Lyme borreliosis. Exp Appl Acarol 22:249–258

    Article  Google Scholar 

  • Gray JS (2008) Ixodes ricinus seasonal activity: implications of global warming indicated by revisiting tick and weather data. Int J Med Microbiol 298:19–24

    Article  Google Scholar 

  • Gray JS, Dautel H, Estrada-Peña A, Kahl O, Lindgren E (2009) Effects of climate change on ticks and tick-borne diseases in Europe. Interdiscip Perspect Infect Dis 2009. doi:10.1155/2009/593232

  • Gubler DJ, Reiter P, Ebi KL, Yap W, Nasci R, Patz JA (2001) Climate variability and change in the United States: potential impacts on vector- and rodent-borne diseases. Environ Health Perspect 109:223–233

    Article  PubMed  Google Scholar 

  • Guiguen C, Degeilh B (2001) Les tiques d’intérêt médical: Rôle vecteur et diagnose de laboratoire. Revue Française des Laboratoires 338:49–57

    Article  Google Scholar 

  • Hamer SA, Tsao JI, Walker ED, Hickling GJ (2010) Invasion of the Lyme disease vector Ixodes scapularis: implications for Borrelia burgdorferi endemicity. EcoHealth 7:47–63

    Article  PubMed  Google Scholar 

  • Hancock PA, Brackley R, Palmer SCF (2011) Modelling the effect of temperature variation on the seasonal dynamics of Ixodes ricinus tick populations. Int J Parasitol 41:513–522

    Article  PubMed  Google Scholar 

  • Hanincová K, Kurtenbach K, Diuk-Wasser M, Brei B, Fish D (2006) Epidemic spread of Lyme borreliosis, northeastern United States. Emerg Infect Dis 12:604–611

    Article  PubMed  Google Scholar 

  • Hernández F, Teel PD, Corson MS, Grant WE (2000) Simulation of rotational grazing to evaluate integrated pest management strategies for Boophilus microplus (Acari: Ixodidae) in Venezuela. Vet Parasitol 92:139–149

    Article  Google Scholar 

  • Humphrey PT, Caporale DA, Brisson D (2010) Uncoordinated phylogeography of Borrelia burgdorferi and its tick vector, Ixodes Scapularis. Evolution 64:2653–2663

    Article  PubMed  Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. In: Core Writing Team, Pachauri RK, Reisinger A (eds) Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, p 104

  • IPCC Technical Paper V (2002) Climate change and biodiversity. In: Gitay H, Suárez A, Watson RT, Dokken DJ (eds) IPCC, Geneva, p 85

  • Jaenson TGT, Tälleklint L, Lundqvist L, Olsen B, Chirico J, Mejlon H (1994) Geographical distribution, host associations, and vector roles of ticks (Acari: Ixodidae, Argasidae) in Sweden. J Med Entomol 31:240–256

    PubMed  CAS  Google Scholar 

  • Jones CJ, Kitron UD (2000) Populations of Ixodes scapularis (Acari: Ixodidae) are modulated by drought at a Lyme disease focus in Illinois. J Med Entomol 37:408–415

    Article  PubMed  CAS  Google Scholar 

  • Jones CG, Ostfeld RS, Richard MP, Schauber EM, Wolff JO (1998) Chain reactions linking acorns to gypsy moth outbreaks and Lyme disease risk. Science 279:1023–1026

    Article  PubMed  CAS  Google Scholar 

  • Jonsson NN (2006) The productivity effects of cattle tick (Boophilus microplus) infestation on cattle, with particular reference to Bos indicus cattle and their crosses. Vet Parasitol 137:1–10

    Article  PubMed  CAS  Google Scholar 

  • Jonsson NN, Cutullé C, Corley SW, Seddon JM (2010) Identification of a mutation in the para-sodium channel gene of the cattle tick Rhipicephalus microplus associated with resistance to flumethrin but not to cypermethrin. Int J Parasitol 40:1659–1664

    Article  PubMed  CAS  Google Scholar 

  • Jore S, Viljugrein H, Hofshagen M, Brun-Hansen H, Kristoffersen AB, Nygard K, Brun E, Ottesen P, Saevik BK, Ytrehus B (2011) Multi-source analysis reveals latitudinal and altitudinal shifts in range of Ixodes ricinus at its northern distribution limit. Parasit Vectors 4:84

    Article  PubMed  Google Scholar 

  • Kalluri S, Gilruth P, Rogers D, Szczur M (2007) Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: a review. PLoS Pathog 3:1361–1371

    Article  PubMed  CAS  Google Scholar 

  • Keesing F, Holt RD, Ostfeld RS (2006) Effects of species diversity on disease risk. Ecol Lett 9:485–498

    Article  PubMed  CAS  Google Scholar 

  • Kempf F, Boulinier T, de Meeûs T, Arnathau C, McCoy KD (2009a) Recent evolution of host-associated divergence in the seabird tick Ixodes uriae. Mol Ecol 18:4450–4462

    Article  PubMed  CAS  Google Scholar 

  • Kempf F, de Meeûs T, Arnathau C, Degeilh B, McCoy KD (2009b) Assortative pairing in Ixodes ricinus (Acari: Ixodidae), the European vector of Lyme Borreliosis. J Med Entomol 46:471–474

    Article  PubMed  Google Scholar 

  • Kempf F, McCoy KD, de Meeûs T (2010) Wahlund effects and sex-biased dispersal in Ixodes ricinus, the European vector of Lyme borreliosis: new tools for old data. Infect Genet Evol 10:989–997

    Article  PubMed  Google Scholar 

  • Kempf F, De Meeûs T, Vaumourin E, Noel V, Taragel’ová V, Plantard O, Heylen D, Eyraud C, Chevillon C, McCoy KD (2011) Host races in Ixodes ricinus, the European vector of Lyme borreliosis. Infect Genet Evol 11:2043–2048

    Google Scholar 

  • Kent RJ (2009) Molecular methods for arthropod bloodmeal identification and applications to ecological and vector-borne disease studies. Mol Ecol Resour 9:4–18

    Article  PubMed  CAS  Google Scholar 

  • Klompen JSH, Black WC, Keirans JE, Oliver JH (1996) Evolution of ticks. Annu Rev Entomol 41:141–161

    Article  PubMed  CAS  Google Scholar 

  • Koffi BB, de Meeûs T, Barré N, Durand P, Arnathau C, Chevillon C (2006) Founder effects, inbreeding and effective sizes in the Southern cattle tick: the effect of transmission dynamics and implications for pest management. Mol Ecol 15:4603–4611

    Article  PubMed  CAS  Google Scholar 

  • Labruna M, Naranjo A, Thompson C, Estrada-Peña A, Gugliemone A, Jongejan F, de la Fuente J (2009) Allopatric speciation in ticks: genetic and reproductive divergence between geographic strains of Rhipicephalus (Boophilus) microplus. BMC Evol Biol 9:46

    Article  PubMed  CAS  Google Scholar 

  • Leech DI, Crick HQP (2007) Influence of climate change on the abundance, distribution and phenology of woodland bird species in temperate regions. Ibis 149:128–145

    Article  Google Scholar 

  • Leighton PA, Koffi JK, Pelcat Y, Lindsay LR, Ogden NH (2012) Predicting the speed of tick invasion: an empirical model of range expansion for the Lyme disease vector Ixodes scapularis in Canada. J Appl Ecol 49:457–464

    Google Scholar 

  • Lindgren E (1998) Climate change, tick-borne encephalitis and vaccination needs in Sweden—a prediction model. Ecol Model 110:55–63

    Article  Google Scholar 

  • Lindgren E, Gustafson R (2001) Tick-borne encephalitis in Sweden and climate change. Lancet 358:16–18

    Article  PubMed  CAS  Google Scholar 

  • Lindgren E, Jaenson TGT (2006) Lyme Borreliosis in Europe: influences of climate and climate change, epidemiology, ecology and adaptation measures. WHO Regional Office for Europe, Copenhagen

    Google Scholar 

  • Lindgren E, Tälleklint L, Polfeldt T (2000) Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ Health Perspect 108:119–123

    Article  PubMed  CAS  Google Scholar 

  • LoGiudice K, Ostfeld RS, Schmidt KA, Keesing F (2003) The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc Natl Acad Sci USA 100:567–571

    Article  PubMed  CAS  Google Scholar 

  • LoGiudice K, Duerr STK, Newhouse MJ, Schmidt KA, Killilea ME, Ostfeld RS (2008) Impact of host community composition on Lyme disease risk. Ecology 89:2841–2849

    Article  PubMed  Google Scholar 

  • Lukan M, Bullova E, Petko B (2010) Climate warming and tick-borne encephalitis, Slovakia. Emerg Infect Dis 16:524–526

    Article  PubMed  Google Scholar 

  • Lynch HJ, Fagan WF, Naveen R (2010) Population trends and reproductive success at a frequently visited penguin colony on the western Antarctic Peninsula. Polar Biol 33:493–503

    Article  Google Scholar 

  • Madder M, Thys E, Geysen D, Baudoux C, Horak I (2007) Boophilus microplus ticks found in West Africa. Exp Appl Acarol 43:233–234

    Article  PubMed  Google Scholar 

  • Magalhães S, Forbes MR, Skoracka A, Osakabe M, Chevillon C, McCoy KD (2007) Host race formation in the Acari. Exp Appl Acarol 42:225–238

    Article  PubMed  Google Scholar 

  • Maillard JC, Maillard N (1998) Historique du peuplement bovin et de l’introduction de la tique Amblyomma variegatum dans les îles françaises des Antilles: synthèse bibliographique. Ethnozootechnie 61:19–36

    Google Scholar 

  • Mangin S, Gauthier-Clerc M, Frenot Y, Gendner JP, Le Maho Y (2003) Ticks Ixodes uriae and the breeding performance of a colonial seabird king penguin Aptenodytes patagonicus. J Avian Biol 34:30–34

    Article  Google Scholar 

  • Matthysen E, Adriaensen F, Dhondt AA (2011) Multiple responses to increasing spring temperatures in the breeding cycle of blue and great tits (Cyanistes caeruleus, Parus major). Global Change Biol 17:1–16

    Article  Google Scholar 

  • McCarty JP (2001) Ecological consequences of recent climate change. Conserv Biol 15:320–331

    Article  Google Scholar 

  • McCoy KD, Boulinier T, Tirard C, Michalakis Y (2001) Host specificity of a generalist parasite: genetic evidence of sympatric host races in the seabird tick Ixodes uriae. J Evol Biol 14:395–405

    Article  Google Scholar 

  • McCoy KD, Boulinier T, Tirard C, Michalakis Y (2003) Host-dependent genetic structure of parasite populations: differential dispersal of seabird tick host races. Evolution 57:288–296

    PubMed  Google Scholar 

  • McCoy KD, Chapuis E, Tirard C, Boulinier T, Michalakis Y, Le Bohec C, Le Maho Y, Gauthier-Clerc M (2005) Recurrent evolution of host-specialized races in a globally distributed parasite. Proc R Soc Lond B-Biol Sci 272:2389–2395

    Article  Google Scholar 

  • Molia S, Frebling M, Vachieery N, Pinarello V, Petitclerc M, Rousteau A, Martinez D, Lefrancois T (2008) Amblyomma variegatum in cattle in Marie Galante, French Antilles: prevalence, control measures, and infection by Ehrlichia ruminantium. Vet Parasitol 153:338–346

    Article  PubMed  Google Scholar 

  • Morán-Cadenas F, Rais O, Humair PF, Douet V, Moret J, Gern L (2007) Identification of host bloodmeal source and Borrelia burgdorferi sensu lato in field-collected Ixodes ricinus ticks in Chaumont (Switzerland). J Med Entomol 44:1109–1117

    Article  PubMed  Google Scholar 

  • Ogden NH, Lindsay LR, Beauchamp G, Charron D, Maarouf A, O’Callaghan CJ, Waltner-Toews D, Barker IK (2004) Investigation of relationships between temperature and developmental rates of tick Ixodes scapularis (Acari: Ixodidae) in the laboratory and field. J Med Entomol 41:622–633

    Article  PubMed  CAS  Google Scholar 

  • Ogden NH, Bigras-Poulin M, O’Callaghan CJ, Barker IK, Lindsay LR, Maarouf A, Smoyer-Tomic KE, Waltner-Toews D, Charron D (2005) A dynamic population model to investigate effects of climate on geographic range and seasonality of the tick Ixodes scapularis. Int J Parasitol 35:375–389

    Article  PubMed  CAS  Google Scholar 

  • Ogden NH, Maarouf A, Barker IK, Bigras-Poulin M, Lindsay LR, Morshed MG, O’Callaghan CJ, Ramay F, Waltner-Toews D, Charron DF (2006) Climate change and the potential for range expansion of the Lyme disease vector Ixodes scapularis in Canada. Int J Parasitol 36:63–70

    Article  PubMed  CAS  Google Scholar 

  • Ogden NH, Bigras-Poulin M, Hanincová K, Maarouf A, O’Callaghan CJ, Kurtenbach K (2008) Projected effects of climate change on tick phenology and fitness of pathogens transmitted by the North American tick Ixodes scapularis. J Theor Biol 254:621–632

    Article  PubMed  CAS  Google Scholar 

  • Olwoch JM, Van Jaarsveld AS, Scholtz CH, Horak IG (2007) Climate change and the genus Rhipicephalus (Acari: Ixodidae) in Africa. Onderstepoort J Vet Res 74:45–72

    Article  PubMed  CAS  Google Scholar 

  • Osterkamp J, Wahl U, Schmalfuss G, Haas W (1999) Host-odour recognition in two tick species is coded in a blend of vertebrate volatiles. J Comp Physiol A 185:59–67

    Article  PubMed  CAS  Google Scholar 

  • Ostfeld RS, Keesing F (2000) Biodiversity and disease risk: the case of lyme disease. Conserv Biol 14:722–728

    Article  Google Scholar 

  • Ostfeld RS, Canham CD, Oggenfuss K, Winchcombe RJ, Keesing F (2006) Climate, deer, rodents, and acorns as determinants of variation in Lyme-disease risk. PLoS Biol 4:1058–1068

    Article  CAS  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  PubMed  CAS  Google Scholar 

  • Parola P, Raoult D (2001) Ticks and tickborne bacterial diseases in humans: an emerging infectious threat. Clin Infect Dis 32:897–928

    Article  PubMed  CAS  Google Scholar 

  • Patz JA, Graczyk TK, Geller N, Vittor AY (2000) Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30:1395–1405

    Article  PubMed  CAS  Google Scholar 

  • Patz JA, Olson SH, Uejio CK, Gibbs HK (2008) Disease emergence from global climate and land use change. Med Clin North Am 92:1473–1491

    Article  PubMed  Google Scholar 

  • Pegram RG (2006) End of the Caribbean Amblyomma programme. ICTTD Newsletter 30:4–6

    Google Scholar 

  • Pegram RG, de Castro JJ, Wilson DD (1997) The CARICOM/FAO/IICA Caribbean Amblyomma programme. Ann NY Acad Sci 849:343–348

    Article  Google Scholar 

  • Pichon B, Egan D, Rogers M, Gray J (2003) Detection and identification of pathogens and host DNA in unfed host-seeking Ixodes ricinus L. (Acari: Ixodidae). J Med Entomol 40:723–731

    Article  PubMed  CAS  Google Scholar 

  • Pisanu B, Marsot M, Marmet J, Chapuis JL, Reale D, Vourc’h G (2010) Introduced Siberian chipmunks are more heavily infested by ixodid ticks than are native bank voles in a suburban forest in France. Int J Parasitol 40:1277–1283

    Article  PubMed  CAS  Google Scholar 

  • Polley L (2005) Navigating parasite webs and parasite flow: emerging and re-emerging parasitic zoonoses of wildlife origin. Int J Parasitol 35:1279–1294

    Article  PubMed  Google Scholar 

  • Rageau J, Vergent G (1959) Les tiques (Acariens: Ixodidae) des îles françaises du pacifique. Bull Soc Pathol Exot 52:819–835

    CAS  Google Scholar 

  • Randolph SE (1997) Abiotic and biotic determinants of the seasonal dynamics of the tick Rhipicephalus appendiculatus in South Africa. Med Vet Entomol 11:25–37

    Article  PubMed  CAS  Google Scholar 

  • Randolph SE (2004) Evidence that climate change has caused ‘emergence’ of tick-borne diseases in Europe? Int J Med Microbiol 293:5–15

    PubMed  Google Scholar 

  • Randolph SE, Rogers DJ (2000) Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change. Proc R Soc B-Biol Sci 267:1741–1744

    Article  CAS  Google Scholar 

  • Randolph SE, Storey K (1999) Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): implications for parasite transmission. J Med Entomol 36:741–748

    PubMed  CAS  Google Scholar 

  • Rizzoli A, Hauffe HC, Tagliapietra V, Neteler M, Rosa R (2009) Forest structure and roe deer abundance predict tick-borne encephalitis risk in Italy. PLoS ONE 4:e4336

  • Robinson SA, Wasley J, Tobin AK (2003) Living on the edge—plants and global change in continental and maritime Antarctica. Global Change Biol 9:1681–1717

    Article  Google Scholar 

  • Rogers DJ, Randolph SE (2006) Climate change and vector-borne diseases. Adv Parasitol 62:345–381

    Article  PubMed  CAS  Google Scholar 

  • Root TL, Liverman D, Newman C (2006) Managing biodiversity in the light of climate change: current biological effects and future impacts. In: Macdonald DW (ed) Key topics in conservation biology. Blackwells, Oxford, pp 85–104

    Google Scholar 

  • Sanders CJ, Mellor PS, Wilson AJ (2010) Invasive arthropods. Rev Sci Tech Off Int Epiz 29:273–286

    CAS  Google Scholar 

  • Schmidt KA, Ostfeld RS (2001) Biodiversity and the dilution effect in disease ecology. Ecology 82:609–619

    Article  Google Scholar 

  • Schulze TL, Jordan RA, Schulze CJ (2005) Host associations of Ixodes scapularis (Acari: Ixodidae) in residential and natural settings in a Lyme disease-endemic area in New Jersey. J Med Entomol 42:966–973

    Article  PubMed  Google Scholar 

  • Shope R (1991) Global climate change and infectious diseases. Environ Health Perspect 96:171–174

    Article  PubMed  CAS  Google Scholar 

  • Shuman EK (2010) Global climate change and infectious diseases. N Engl J Med 362:1061–1063

    Article  PubMed  CAS  Google Scholar 

  • Sonenshine DE (1993) Biology of ticks, vol 2. Oxford University Press, New York

    Google Scholar 

  • Stachurski F (2000) Invasion of West African cattle by the tick Amblyomma variegatum. Med Vet Entomol 14:391–399

    Article  PubMed  CAS  Google Scholar 

  • Steere AC, Coburn J, Glickstein L (2004) The emergence of Lyme disease. J Clin Invest 113:1093–1101

    PubMed  CAS  Google Scholar 

  • Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP (2007) Putting the ‘landscape’ in landscape genetics. Heredity 98:128–142

    Article  PubMed  CAS  Google Scholar 

  • Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514

    Article  PubMed  Google Scholar 

  • Subak S (2003) Effects of climate on variability in Lyme disease incidence in the northeastern United States. Am J Epidemiol 157:531–538

    Article  PubMed  Google Scholar 

  • Šumilo D, Bormane A, Asokliene L, Vasilenko V, Golovljova I, Avsic-Zupanc T, Hubalek Z, Randolph SE (2008) Socio-economic factors in the differential upsurge of tick-borne encephalitis in Central and Eastern Europe. Rev Med Virol 18:81–95

    Article  PubMed  Google Scholar 

  • Süss J (2008) Tick-borne encephalitis in Europe and beyond—the epidemiological situation as of 2007. Eurosurveill 13:8

    Google Scholar 

  • Süss J, Klaus C, Gerstengarbe FW, Werner PC (2008) What makes ticks tick? Climate change, ticks, and tick-borne diseases. J Travel Med 15:39–45

    Article  PubMed  Google Scholar 

  • Sutherst RW (1998) Implications of global change and climate variability for vector-borne diseases: generic approaches to impact assessments. Int J Parasitol 28:935–945

    Article  PubMed  CAS  Google Scholar 

  • Sutherst RW (2001) The vulnerability of animal and human health to parasites under global change. Int J Parasitol 31:933–948

    Article  PubMed  CAS  Google Scholar 

  • Sutherst RW (2003) Prediction of species geographical ranges. J Biogeogr 30:805–816

    Article  Google Scholar 

  • Sutherst RW, Bourne AS (2009) Modelling non-equilibrium distributions of invasive species: a tale of two modelling paradigms. Biol Invasions 11:1231–1237

    Article  Google Scholar 

  • Sutherst RW, Maywald GF (1985) A computerized system for matching climates in ecology. Agric Ecosyst Environ 13:281–299

    Article  Google Scholar 

  • Sutherst RW, Maywald GF, Bourne AS (2007) Including species interactions in risk assessments for global change. Global Change Biol 13:1843–1859

    Article  Google Scholar 

  • Swanson SJ, Neitzel D, Reed KD, Belongia EA (2006) Coinfections acquired from Ixodes ticks. Clin Microbiol Rev 19:708–727

    Article  PubMed  Google Scholar 

  • Tälleklint L, Jaenson TGT (1998) Increasing geographical distribution and density of Ixodes ricinus (Acari: Ixodidae) in central and northern Sweden. J Med Entomol 35:521–526

    PubMed  Google Scholar 

  • Theiler G (1962) The Ixodidae parasites of vertebrates in Africa south of the Sahara. Project S 9958. Report to the Director of Veterinary Services, Onderstepoort, pp 154–159

  • Thomas CJ, Davies G, Dunn CE (2004) Mixed picture for changes in stable malaria distribution with future climate in Africa. Trends Parasitol 20:216–220

    Article  PubMed  Google Scholar 

  • Thompson C, Spielman A, Krause PJ (2001) Coinfecting deer-associated zoonoses: Lyme disease, Babesiosis, and Ehrlichiosis. Clin Infect Dis 33:676–685

    Article  PubMed  CAS  Google Scholar 

  • Thuiller W, Broennimann O, Hughes G, Alkemade JRM, Midgley GF, Corsi F (2006) Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions. Global Change Biol 12:424–440

    Article  Google Scholar 

  • Tompkins DM, Dunn AM, Smith MJ, Telfer S (2011) Wildlife diseases: from individuals to ecosystems. J Anim Ecol 80:19–38

    Article  PubMed  Google Scholar 

  • Tønnesen MH, Penzhorn BL, Bryson NR, Stoltsz WH, Masibigiri T (2004) Displacement of Boophilus decoloratus by Boophilus microplus in the Soutpansberg region, Limpopo Province, South Africa. Exp Appl Acarol 32:199–209

    Article  PubMed  Google Scholar 

  • Uilenberg G, Camus E (1993) Heartwater (cowdriosis). In: Woldehiwet Z, Ristic M (eds) Rickettsial and chlamydial diseases of domestic ruminants. Pergamon Press, Oxford, pp 293–332

    Google Scholar 

  • Van Buskirk J, Ostfeld RS (1995) Controlling Lyme-disease by modifying the density and species composition of tick hosts. Ecol Appl 5:1133–1140

    Article  Google Scholar 

  • Vassallo M, Paul REL, Perez-Eid C (2000) Temporal distribution of the annual nymphal stock of Ixodes ricinus ticks. Exp Appl Acarol 24:941–949

    Article  Google Scholar 

  • Vial L (2009) Biological and ecological characteristics of soft ticks (Ixodida: Argasidae) and their impact for predicting tick and associated disease distribution. Parasite 16:191–202

    Article  PubMed  CAS  Google Scholar 

  • Vollmer SA, Bormane A, Dinnis RE, Seellg F, Dobson ADM, Aanensen DM, James MC, Donaghy M, Randolph SE, Fell EJ, Kurtenbach K, Margos G (2010) Host migration impacts on the phylogeography of Lyme Borreliosis spirochaete species in Europe. Environ Microbiol 13:184–192

    Article  PubMed  CAS  Google Scholar 

  • Vourc’h G, Vial L (2008) Distribution of ticks (and tick-borne diseases) in relation to climate change. Illustration with soft and hard ticks. In: Rowlinson P, Steele M, Nefzaoui A (eds) Livestock and global climate change. Proceeding of the international conference in Hammamet, Tunisia, 17–20, Cambridge University Press, Cambridge, pp 90–95

  • Walker BH, Steffen WL (1999) The nature of global change. In: Walker BH, Steffen WL, Canadell J, Ingram J (eds) The terrestrial biosphere and global change. Cambridge University Press, Cambridge, pp 1–18

    Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  PubMed  CAS  Google Scholar 

  • Wanless S, Barton TR, Harris MP (1997) Blood hematocrit measurements of four species of North Atlantic seabirds in relation to levels of infestation by the tick Ixodes uriae. Colonial Waterbirds 20:540–544

    Article  Google Scholar 

  • Weiss LM (2008) Zoonotic parasitic diseases: emerging issues and problems. Int J Parasitol 38:1209–1210

    Article  PubMed  Google Scholar 

  • Wilcox BA, Gubler DJ (2005) Disease ecology and the global emergence of zoonotic pathogens. Environ Health Prev Med 10:263–272

    Article  PubMed  CAS  Google Scholar 

  • Wilson ML (1998) Distribution and abundance of Ixodes scapularis (Acari: Ixodidae) in North America: ecological processes and spatial analysis. J Med Entomol 35:446–457

    PubMed  CAS  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inform Control 8:338–353

    Article  Google Scholar 

  • Zeman P, Lynen G (2010) Conditions for stable parapatric coexistence between Boophilus decoloratus and B. microplus ticks: a simulation study using the competitive Lotka-Volterra model. Exp Appl Acarol 52:409–426

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank two anonymous referees for helpful comments on a previous version of this manuscript, Mrs AM Hello for her corrections and her critical reading of the manuscript, and the members of the group ‘Ticks and tick-borne diseases’ of the REID for useful discussions. KM and CC were supported by the CNRS and the IRD, and GV by the INRA. LV recognises support from the CIRAD, the ECDC (European Centre for Diseases prevention and Control) and the European Union (FP7-KBBE-2007, project ASFRISK). EL was supported by a PhD fellowship from the University of Montpellier 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elsa Léger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Léger, E., Vourc’h, G., Vial, L. et al. Changing distributions of ticks: causes and consequences. Exp Appl Acarol 59, 219–244 (2013). https://doi.org/10.1007/s10493-012-9615-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-012-9615-0

Keywords

Navigation