Skip to main content
Log in

Elements for modelling the dynamics of tritrophic population interactions

  • Population Dynamics Of Spider Mites And Predatory Mites-Part 2
  • Published:
Experimental & Applied Acarology Aims and scope Submit manuscript

Abstract

Models of acarine systems are reviewed with particular reference to objectives for modelling, to the methods used for model building, and to the results obtained. The following elements are considered important in models of complex systems: common food acquisition/allocation functions in multitrophic models; migration and within-systems movement; and behavioral components in functional responses. The first element is illustrated with an apple tree/mite and a cassava/mite model. In mite management, the available systems models appear more useful for strategic purposes, i.e. for selecting biological control agents and for planning pest control measures, than for tactical decision making in supervised pest management programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baumgärtner, J., 1985. Analyse des Apfelbaumökosystems in der Schweiz. Schweiz. Landwirtsch. Forsch., 24: 27–44.

    Google Scholar 

  • Baumgärtner, J. and Severini, M., 1987. Microclimate and arthropod phenologies: the leaf minerPhyllonoryter blancardella F. (Lep.) as an example. In: F. Prodi, F. Rossi and G. Cristoferi (Editors), Agrometeorology; Int. Conf. Agrometeorology, Cesena, 8–9 October 1987. Fondazione Cesena Agricultura Publ., 498 pp.

  • Baumgärtner, J., Graf, B., Zahner, Ph., Genini, M. and Gutierrez, A.P., 1986. Generalizing a poulation model for simulating ‘Golden delicious’ apple tree growth and development. Acta Hortic., 184: 111–122.

    Google Scholar 

  • Bernstein, C., 1985. A simulation model for an acarine predator-prey system (Phytoseiulus persimilis - Tetranychus urticae). J. Anim. Ecol., 54: 375–389.

    Google Scholar 

  • Berreen, J.M., 1974. The development and validation of a simple model for population growth in the grain mite,Acarus siro L. J. Stored Prod. Res., 10: 147–154.

    Google Scholar 

  • Burnett, T., 1977. Biological models of the two acarine predators of the grain miteAcarus siro L. Can. J. Zool., 55: 1312–1323.

    Google Scholar 

  • Carey, J.R., 1983. Practical application of a stable age distribution: Analysis of a tetranychid mite (Acari: Tetranychidae) population outbreak. Environ. Entomol., 12: 10–18.

    Google Scholar 

  • Chesson, J., 1983. The estimation and analysis of preference and its relationship to foraging models. Ecology, 64: 1297–1304.

    Google Scholar 

  • Conway, G.R., 1984. Introduction. In: G.R. Conway (Editor), Pest and Pathogen Control; Strategic, Tactical, and Policy Models. 13th Int. Series on Applied Systems Analysis. Wiley, Chichester, 488 pp.

    Google Scholar 

  • Crooker, A., 1985. Embryonic and juvenile development. In: W. Helle and M.W. Sabelis (Editors), Spider Mites, their Biology, Natural Enemies and Control, Vol. 1A, Elsevier, Amsterdam, pp. 149–170.

    Google Scholar 

  • Curry, G.L. and Feldman, R.M., 1987. Mathematical Foundations of Population Dynamics. Texas A&M University Press, College Station, 246 pp.

  • De Wit, C.T. and Goudriaan, J., 1978. Simulation of Ecological Processes. Pudoc, Wageningen, 175 pp.

    Google Scholar 

  • Dicke, M. and de Jong, M., 1986. Prey preference of predatory mites: Electrophoretic analysis of the diet ofTyphlodromus pyri Scheuten andAmblyseius finlandicus (Oudemans), collected in Dutch orchards. Bull. IOBC/WPRS, 9: 62–67.

    Google Scholar 

  • Dicke, M. and Groeneveld, A., 1986. Hierarchical structure in kairomone preference of the predatory miteAmblyseius potentillae: dietary component indispensable for diapause induction affects prey location behaviour. Ecol. Entomol., 11: 131–138.

    Google Scholar 

  • Dover, M.J., Croft, B.A., Welch, S.M. and Tummala, R.L., 1979. Biological control ofPanonychus ulmi (Acarina, Tetranychidae) byAmblyseius fallacis (Acarina: Phytoseiidae) on apple: a prey-predator model. Environ. Entomol., 8: 282–292.

    Google Scholar 

  • Ferris, H., 1981. Mathematical approaches to the assessment of crop damage. In: B.M. Zuckerman and R.A. Rohde (Editors), Plant Parasitic Nematodes, Vol. 3. Academic Press, London, 508 pp.

    Google Scholar 

  • Fransz, M.G., 1974. The Functional Response to Prey Density in an Acarine System. Pudoc, Wageningen, 144 pp.

    Google Scholar 

  • Frazer, B.D. and Gilbert, N., 1976. Coccinellids and aphids: a quantitative study of the impact of adult Ladybirds (Coleoptera, Coccinellidae) preying on field populations of pea aphids (Homoptera: Aphididae). J. Entomol. Soc. B.C., 73: 33–56.

    Google Scholar 

  • Fujita, K., Inoue, T. and Takafuji, A., 1979. Systems analysis of an acarine predator-prey system. I. Res. Popul. Ecol., 21: 105–119.

    Google Scholar 

  • Gilbert, N., Gutierrez, A.P., Frazer, B.D. and Jones, R.E., 1976. Ecological Relationships. Freeman, Reading, 157 pp.

    Google Scholar 

  • Gutierrez, A.P. and Wang, Y., 1977. Applied population ecology: models for crop production and pest management. In: G.A. Norton and C.S. Holling (Editors), Pest Management. Proc. Int. Conf. Pest Management, Laxenburg, 25–29 October 1976. Int. Inst. for Applied Systems Analysis, 352 pp.

  • Gutierrez, A.P., Baumgärtner, J.U. and Hagen, K.S., 1981. A conceptual model for growth, development and reproduction in the Ladybird beetle,Hippodamia convergens (Coleoptera: Coccinellidae). Can. Entomol., 113: 21–33.

    Google Scholar 

  • Gutierrez, A.P., Baumgärtner, J.U. and Summers, C.G., 1984. Multitrophic models of predator-prey energetics. Can. Entomol., 116: 923–963.

    Google Scholar 

  • Gutierrez, A.P., Schilthess, F., Wilson, L.T., Villacorta, A.M., Ellis, C.K. and Baumgärtner, J.U., 1987. Energy acquisition and allocation in plant and insects: a hypothesis for the possible role of hormones in insect feeding patterns. Can. Entomol., 119: 109–129.

    Google Scholar 

  • Gutierrez, A.P., Yaninek, J.S., Wermelinger, B. and Ellis, C.K., 1988. An analysis of the biological control of cassava pests in Africa: III. The interaction of cassava and the cassava green mite. J. Appl. Ecol. (in press).

  • Hamai, J. and Huffaker, C.B., 1978. Potential of predation byMetaseiulus occidentalis in compensating for increased, nutritionally induced, power of increase inTetranychus urticae. Entomophaga, 23: 225–237.

    Article  Google Scholar 

  • Hayes, A.J., 1987. A phenology model of European red mite for timing miticides. Proc. N.Z. Weed Pest Control Conf., 40: 90–93.

    Google Scholar 

  • Herne, D.C. and Lund, C.T., 1979. Simulation model of European red mite population dynamics developed for a mini-computer. Can. Entomol., 111: 499–507.

    Google Scholar 

  • Holling, C.S., 1959a. The components of predation as revealed by a study of small mammal predation of the European pine sawfly. Can. Entomol., 91: 293–320.

    Google Scholar 

  • Holling, C.S., 1959b. Some characteristics of simple types of predation and parasitisms. Can. Entomol., 91: 385–398.

    Google Scholar 

  • Hoy, M., and Smilanick, J.M., 1981. Non-random prey location by the phytoseiid predatorMetaseiulus occidentalis: Differential responses to several spider mite species. Entomol. Exp. Appl., 29: 241–253.

    Article  Google Scholar 

  • Huffaker, C.B., 1958. Experimental studies on predation: dispersion factors and predator-prey oscillations. Hilgardia, 14: 343–383.

    Google Scholar 

  • Ives, P.M., 1981. Estimation of coccinellid numbers and movements in the field. Can. Entomol., 113: 981–997.

    Google Scholar 

  • Ivlev, V.S., 1961. Experimental Ecology of the Feeding of Fishes. Yale Univ. Press, New Haven, CT, 302 pp.

    Google Scholar 

  • Jackson, J.E. and Palmer, J.W., 1979. A simple model of light transmission and interception by discontinuous canopies. Ann. Bot., 44: 381–383.

    Google Scholar 

  • Johnson, D.L. and Wellington, W.G., 1984. Simulation of the interaction of predatoryTyphlodromus mites with European red mite,Panonychus ulmi (Koch). Res. Popul. Ecol., 26: 30–50.

    Google Scholar 

  • Leslie, P.H., 1945. On the use of matrices in certain population mathematics. Biometrika, 35: 183–212.

    Google Scholar 

  • Logan, J.A., Wollkind, D.J., Hoyt, S.C. and Tanigoshi, L.K., 1976. An analytic model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol., 5: 1133–1140.

    Google Scholar 

  • Loomis, R.S. and Williams, W.A., 1963. Maximum crop productivity: an estimate. Crop Sci., 3: 67–72.

    Google Scholar 

  • Manetsch, T.J., 1976. Time varying-distributed delays and their use in aggregative models of large systems. IEEE Trans. Syst. Man Cybern., 6: 547–553.

    Google Scholar 

  • Mowery, P.D., Asquith, D. and Bode, W.M., 1975. Computer simulation for predicting the number ofStethorus punctum needed to control the European red mite in Pennsylvania apple trees. J. Econ. Entomol., 68: 250–254.

    Google Scholar 

  • Müller, W., 1976. Die Variabiltät von Baum- und Fruchtwachstum bei Apfelbäumen und deren Bedeutung bei der Planung von Versuchen. Diss. ETH 5670, Zurich, 158 pp.

  • Nachman, G., 1987a. Systems analysis of acarine predator-prey interactions. I. A stochastic simulation model of spatial processes. J. Anim. Ecol., 56: 247–265.

    Google Scholar 

  • Nachman, G., 1987b. Systems analysis of acarine predator-prey interactions. II. The role of spatial processes in system stability. J. Anim. Ecol., 56: 267–281.

    Google Scholar 

  • Nicholson, A.J. and Bailey, V.A., 1935. The balance of animal populations. Part 1. Proc. Zool. Soc. London, 1935: 551–598.

    Google Scholar 

  • Penning de Vries, F.W.T. and van Laar, H.H., 1982. Simulation of growth processes and the model BACROS. In: F.W.T. Penning de Vries and H.H. van Laar (Editors), Simulation of Plant Growth and Crop Production. Pudoc, Wageningen, 308 pp.

    Google Scholar 

  • Priestley, C.A., 1960. Seasonal changes in the carbohydrate resources of some six year old apple trees. Rep. East Malling Res. Stn., 1959: 70–77.

    Google Scholar 

  • Rabbinge, R., 1976. Biological Control of Fruit-Tree Red Spider Mite. Pudoc, Wageningen, 228 pp.

    Google Scholar 

  • Rabbinge, R., 1979. Predator-prey systems with mites. EPPO Bull., 9: 273–281.

    Google Scholar 

  • Rabbinge, R. and Hoy, M.A., 1980. A population model for two-spotted spider miteTetranychus urticae and its predatorMetaseiulus occidentalis. Entomol. Exp. Appl., 28: 64–81.

    Article  Google Scholar 

  • Royama, T., 1971. A comparative study of models for predation and parasitism. Res. Popul. Ecol. Supl., 1: 1–91.

    Google Scholar 

  • Sabelis, M.W., 1986. The functional responses of predatory mites to the density of two-spotted spider mites. In: J.A.J. Metz and O. Diekmann (Editors), Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics, 68; Springer, Berlin, pp. 298–321.

    Google Scholar 

  • Sabelis, M.W. and Laane, W.E.M., 1986. Regional dynamics of spider mite populations that become extinct locally because of food source depletion and predation by phytoseiid mites (Acarina: Tetranychidae, Phytoseiidae). In: J.A.J. Metz and O. Diekmann (Editors), Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics, 68; Springer, Berlin, pp. 345–375.

    Google Scholar 

  • Sabelis, M.W. and van de Baan, H.E., 1983. Location of distant spider mite colonies by phytoseiid predators: Demonstration of specific kairomones emitted byTetranychus urticae andPanonychus ulmi. Entomol. Exp. Appl., 33: 303–314.

    Google Scholar 

  • Sabelis, M.W. and van der Meer, J., 1986. Local dynamics of the interaction between predatory mites and two spotted spider mites. In: J.A.J. Metz and O. Diekmann (Editors), Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics, 68; Springer, Berlin, pp. 322–344.

    Google Scholar 

  • Sabelis, M.W., van Alebeek, F., Bal, A., van Bilsen, J., van Heijningen, T., Kaizer, P., Kramer, G., Snellen, H., Veenebos, R. and Vogelezang, J., 1983. Experimental validation of a simulation model of the interaction betweenPhytoseiulus persimilis andTetranychus urticae on cucumber. SROP/WPRS Bull., 6: 207–229.

    Google Scholar 

  • Shaw, P., 1984. Simulation model of a predator-prey system comprized ofPhytoseiulus persimilis Athias-Henriot (Acari, Phytoseiidae) andTetranychus urticae Koch (Acari, Tetranychidae). I. Structure and validation of the model. Res. Popul. Ecol., 26: 235–259.

    Google Scholar 

  • Shoemaker, C.A., 1980. The role of systems analysis in integrated pest management. In: C.B. Huffaker (Editor), New Technology of Pest Control. Wiley, Chichester, 500 pp.

    Google Scholar 

  • Takafuji, A., Tsuda, Y. and Miki, T., 1983. Systems behaviour in predator-prey interaction, with special reference to acarine predator-prey systems. Res. Popul. Ecol., Suppl. 3: 75–92.

    Google Scholar 

  • Taylor, L.R., 1961. Aggregation, variance and the mean. Nature (London), 189: 732–735.

    Google Scholar 

  • Taylor, L.R., 1984. Assessing and interpreting the spatial distributions of insect populations. Annu. Rev. Entomol., 29: 321–357.

    Article  Google Scholar 

  • Toole, J.L., Norman, J.M., Holtzer, T.O. and Perring, T.M., 1984. Simulating Banks grass mite (Acari, Tetranychidae) population dynamics as a subsystem of a crop canopy-microenvironment model. Environ. Entomol., 13: 32–337.

    Google Scholar 

  • Van de Vrie, M. and Boersma, A., 1970. The influence of the predaceous miteTyphlodromus (A.) potentillae (Garman) on the development ofPanonychus ulmi (Koch) on apple grown under various nitrogen conditions. Entomophaga, 15: 291–304.

    Article  Google Scholar 

  • Van Keulen, H., Penning de Vries, F.W.T. and Drees, E., 1982. A summary model for crop growth. In: F.W.T. Penning de Vries and H.H. van Laar (Editors), Simulation of Plant Growth and Crop Production. Pudoc, Wageningen, 308 pp.

    Google Scholar 

  • Vansickle, J., 1977. Attrition in distributed delay models. IEEE Trans. Syst. Man Cybern, 7: 635–638.

    Google Scholar 

  • Von Förster, H., 1959. Some remarks on changing populations. In: H. Stohlman (Editor), The Kinetics of Cellular Proliferation. Grune and Stratton, New York, 456 pp.

    Google Scholar 

  • Wang, Y., Gutierrez, A.P., Oster, G. and Daxl, R., 1977. A population model for plant growth and development. Coupling cotton-herbivore interaction. Can. Entomol., 109: 1359–1374.

    CAS  Google Scholar 

  • Wollkind, D.J., Hastings, A. and Logan, J.A., 1980. Functional response, numerical response, and stability in arthropod predator-prey ecosystems involving age structure. Res. Popul. Ecol., 22: 323–338.

    Google Scholar 

  • Wrensch, D.L. and Young, S.S.Y., 1983. Relationship between primary and tertiary sex ratio in the two-spotted spider mite (Acarina:Tetranychidae). Ann. Entomol. Soc. Am., 76: 786–789.

    Google Scholar 

  • Yaninek, S., 1985. An assessment of the phenology, dynamics and impact of cassava green mites on cassava yields in Nigeria: a component of biological control. Ph.D. Thesis, University of California, Berkeley, 166 pp.

    Google Scholar 

  • Ye, H., Zhao, Z.M. and Zhu, W.B., 1985. The systematic analysis and simulation on the population dynamics of the citrus red mitePanonychus citri McG. I. The systematic analysis and simulation. J. Southwest Agric. Coll., 3:12–21.

    Google Scholar 

  • Zahner, Ph., 1985. Ecosystème verger de pommier: analyse du sous-système plante-hôte/acariens phytophages à l’aide de modèles de population. Thèse EPF 7843, Zurich, 133 pp.

  • Zahner, Ph. and Baumgärtner, J., 1988. Analyse des interactions plant-tétraniques-phytoséiides. I. Modèles de population pour la dynamique dePanonychus ulmi (Koch) etTetraychus urticae Koch en verger de pommiers. Oecol. Appl. (in press).

  • Zeng, Z., Li, L.S. and Zhou, X.Y., 1985. Research on the population system and optimal management of the citrus yellow mite (Eotetranychus kankitus E.). J. Southwest. Agric. Coll., 3: 98–123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumgärtner, J., Gutierrez, A.P. & Klay, A. Elements for modelling the dynamics of tritrophic population interactions. Exp Appl Acarol 5, 243–263 (1988). https://doi.org/10.1007/BF02366097

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02366097

Keywords

Navigation