Skip to main content

Advertisement

Log in

Dispersion patterns and monitoring samplings of termite pests in cocoa agroforestry systems of Southern Cameroon

  • Original Research Paper
  • Published:
Applied Entomology and Zoology Aims and scope Submit manuscript

Abstract

Termites are major emerging pests of cocoa in Africa. However, their dispersion models on cocoa trees as well as their sampling plans remain unclear. Moreover, the effect of shade trees on the severity of termite infestation on cocoa is poorly known. We evaluated the severity of termite infestation on cocoa trees in relation to shade management in five cocoa agroforestry systems in southern Cameroon with shade cover ranging from rustic to full sun. The dispersion models of termites on cocoa were analyzed using Taylor’s power law, Nachman model and Iwao’s method. We then simulated the optimal sampling sizes for pest monitoring based on parameters of the best-fitted dispersion model using Southwood’s and Green’s formulas. Our results suggest that shade trees reduce belowground infestation by termites and encourage aboveground infestation; however, belowground infestation is more severe. Taylor’s power law was the best-fitted model to describe the aggregative dispersion pattern of termites on cocoa trees. The estimated sampling plans suggested that Green’s sampling was more precise for termites sampling, where less trees is required, than Southwood’s sampling. This study is pioneer on dispersion patterns and sampling plans of termites on cocoa and could be used by researchers and farmers for decision making about pesticide application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ambele FC, Bisseleua Daghela HB, Babalola OO, Ekesi S (2018a) Soil-dwelling insect pests of tree crops in Sub-Saharan Africa, problems and management strategies—a review. J Appl Entomol 142:539–552

    Google Scholar 

  • Ambele FC, Hervé BD, Ekesi S, Akutse KS, Djuideu CT, Meupia MJ, Babalola OO (2018b) Consequences of shade management on the taxonomic patterns and functional diversity of termites (Blattodea: Termitidae) in cocoa agroforestry systems. Ecol Evol 8:11582–11595

    Google Scholar 

  • Asare R, David S (2010) Planting, replanting and tree diversification in cocoa systems-learning about sustainable cocoa production: a guide for participatory farmer training (No. 13). Forest & Landscape, Denmark

  • Bergman DK, Dillwith JW, Zarrabi AA, Caddel JL, Berberet RC (1991) Epicuticular lipids of alfalfa relative to its susceptibility to spotted alfalfa aphids (Homoptera: Aphididae). Environ Entomol 20:781–785

    CAS  Google Scholar 

  • Bignell DE, Eggleton P (2000) Termites in ecosystems. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Springer, Dordrecht, pp 363–387

    Google Scholar 

  • Binns MR, Nyrop JP (1992) Sampling insect populations for the purpose of IPM decision making. Annu Rev Entomol 37:427–453

    Google Scholar 

  • Bisseleua DHB (2019) Optimizing farmer business case for cocoa agroforestry systems through resilient productivity. Mod Concepts Dev Agron. https://doi.org/10.31031/MCDA.2019.05.000613

    Article  Google Scholar 

  • Bisseleua DHB, Yede VS (2011) Dispersion models and sampling of cacao mirid bug Sahlbergella singularis (Hemiptera: Miridae) on Theobroma cacao in Southern Cameroon. Environ Entomol 40:111–119

    CAS  PubMed  Google Scholar 

  • Bisseleua HBD, Fotio D, Yede MAD, Vidal S (2013) Shade tree diversity, cocoa pest damage, yield compensating inputs and farmers’ net returns in West Africa. PLoS ONE 8:e56115

    CAS  PubMed  Google Scholar 

  • Bisseleua DHB, Begoude D, Tonnang H, Vidal S (2017) Ant-mediated ecosystem services and disservices on marketable yield in cocoa agroforestry systems. Agr Ecosyst Environ 247:409–417

    Google Scholar 

  • Boogaard J, van Dijk GM (2012) Non-destructive testing. Elsevier

    Google Scholar 

  • Cassano CR, Schroth G, Faria D, Delabie JHC, Bede L (2009) Landscape and farm scale management to enhance biodiversity conservation in the cocoa producing region of southern Bahia, Brazil. Biodivers Conserv 18:577–603. https://doi.org/10.1007/s10531-008-9526-x

    Article  Google Scholar 

  • Clough Y, Putra DD, Pitopang R, Tscharntke T (2009) Local and landscape factors determine functional bird diversity in Indonesian cacao agroforestry. Biol Cons 142:1032–1041

    Google Scholar 

  • Cowie RH, Logan JW, Wood TG (1989) Termite (Isoptera) damage and control in tropical forestry with special reference to Africa and Indo-Malaysia: a review. Bull Entomol Res 79:173–184

    Google Scholar 

  • Djuideu TCL, Bisseleua DHB, Kekeunou S, Meupia MJ, Difouo FG, Ambele CF (2020) Plant community composition and functional characteristics define invasion and infestation of termites in cocoa agroforestry systems. Agrofor Syst 94:185–201

    Google Scholar 

  • Djuideu CTL, Bisseleua HDB, Kekeunou S, Ambele FC (2021) Rehabilitation practices in cocoa agroforestry systems mitigate outbreaks of termites and support cocoa tree development and yield. Agr Ecosyst Environ 311:107324. https://doi.org/10.1016/j.agee.2021.107324

    Article  Google Scholar 

  • Donovan SE, Griffiths GJ, Homathevi R, Winder L (2007) The spatial pattern of soil-dwelling termites in primary and logged forest in Sabah, Malaysia. Ecol Entomol 32:1–10

    Google Scholar 

  • Eggleton P, Bignell DE, Sands WA, Waite B, Wood TG, Lawton JH (1995) The species richness of termites (Isoptera) under differing levels of forest disturbance in the Mbalmayo Forest Reserve, southern Cameroon. J Trop Ecol 11:85–98

    Google Scholar 

  • Eggleton P, Homathevi R, Jones DT, MacDonald JA, Jeeva D, Bignell DE, Davies RG, Maryati M (1999) Termite assemblages, forest disturbance and greenhouse gas fluxes in Sabah, East Malaysia. Philos Trans R Soc Lond B Biol Sci 354:1791–1802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garat O, Trumper EV, Gorla DE, Perez-Harguindeguy N (1999) Spatial pattern of the Río Cuarto corn disease vector, Delphacodes kuscheli Fennah (Hom., Delphacidae), in oat fields in Argentina and design of sampling plans. J Appl Entomol 123:121–126. https://doi.org/10.1046/j.1439-0418.1999.00319.x

    Article  Google Scholar 

  • Grassé P-P (1986) Termitologia, Tome III: Comportement, Socialité, Écologie, Évolution. Systematique. Fondation Singer-Polignac & Masson

    Google Scholar 

  • Green RH (1970) On fixed precision level sequential sampling. Popul Ecol 12:249–251

    Google Scholar 

  • Harris WV (1954) Termites and tropical agriculture. Butterworths Scientific Publications

    Google Scholar 

  • Hutchison WD, Hogg DB, Poswal AM, Berberet RC, Cuperus GW (1988) Implications of the stochastic nature of Kuno’s and Green’s fixed-precision stop lines: sampling plans for the pea aphid (Homoptera: Aphididae) in alfalfa as an example. J Econ Entomol 81:749–758

    Google Scholar 

  • Inc SPSS (2011) SPSS 20 for Windows. SPSS Inc., Chicago, USA

    Google Scholar 

  • Ives WGH (1954) Sequential sampling of insect populations. For Chron 30:287–291

    Google Scholar 

  • Iwao S (1968) A new regression method for analyzing the aggregation pattern of animal populations. Popul Ecol 10:1–20

    Google Scholar 

  • Iwao S (1975) A new method of sequential sampling to classify populations relative to a critical density. Res Popul Ecol 16:281–288

    Google Scholar 

  • Jagoret P, Michel-Dounias I, Snoeck D, Ngnogué HT, Malézieux E (2012) Afforestation of savannah with cocoa agroforestry systems: a small-farmer innovation in central Cameroon. Agrofor Syst 86:493–504

    Google Scholar 

  • Jagoret P, Snoeck D, Bouambi E, Ngnogue HT, Nyassé S, Saj S (2016) Rehabilitation practices that shape cocoa agroforestry systems in Central Cameroon: key management strategies for long-term exploitation. Agrofor Syst 92:1185–1199

    Google Scholar 

  • Jouquet P, Chaudhary E, Kumar ARV (2018) Sustainable use of termite activity in agro-ecosystems with reference to earthworms. A review. Agron Sustain Dev 38:3

    Google Scholar 

  • Kanmegne J, Smaling EMA, Brussaard L, Gansop-Kouomegne A, Boukong A (2006) Nutrient flows in smallholder production systems in the humid forest zone of southern Cameroon. Nutr Cycl Agroecosyst 76:233–248. https://doi.org/10.1007/s10705-005-8312-3

    Article  Google Scholar 

  • Kotto-Same J, Woomer PL, Appolinaire M, Louis Z (1997) Carbon dynamics in slash-and-burn agriculture and land use alternatives of the humid forest zone in Cameroon. Agr Ecosyst Environ 65:245–256

    Google Scholar 

  • Kuno E (1969) A new method of sequential sampling to obtain the population estimates with a fixed level of precision. Res Popul Ecol 11:127–136

    Google Scholar 

  • Kuno E (1991) Sampling and analysis of insect populations. Annu Rev Entomol 36:285–304

    Google Scholar 

  • Lloyd M (1967) Mean crowding. J Anim Ecol 36:1–30

    Google Scholar 

  • Logan JW, Cowie RH, Wood TG (1990) Termite (Isoptera) control in agriculture and forestry by non-chemical methods: a review. Bull Entomol Res 80:309–330

    Google Scholar 

  • Messier F (1985) Solitary living and extraterritorial movements of wolves in relation to social status and prey abundance. Can J Zool 63:239–245

    Google Scholar 

  • Mossu G (1990) Le cacaoyer: Le techinicien d’agriculture tropical. Maisonneuve et Larose

    Google Scholar 

  • Nachman G (1981) A mathematical model of the functional relationship between density and spatial distribution of a population. J Anim Ecol 50:453–460

    Google Scholar 

  • Nachman G (1984) Estimates of mean population denisty and spatial distribution of Tetranychus urticae (Acarina: Tetranychidae) and Phytoseiulus persmilis (Acarina: Phytoseiidae) based upon the proportion of empty sampling units. J Appl Ecol 21:903–913

    Google Scholar 

  • Naranjo SE, Flint HM (1994) Spatial distribution of preimaginal Bemisia tabaci (Homoptera: Aleyrodidae) in cotton and development of fixed-precision sequential sampling plans. Environ Entomol 23:254–266

    Google Scholar 

  • Naranjo SE, Hutchison WD (1997) Validation of arthropod sampling plans using a resampling approach: software and analysis. Am Entomol 43:48–57

    Google Scholar 

  • Noirot C, Darlington JP (2000) Termite nests: architecture, regulation and defence. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Springer, pp 121–139

  • Norgrove L, Csuzdi C, Forzi F, Canet M, Gounes J (2009) Shifts in soil faunal community structure in shaded cacao agroforests and consequences for ecosystem function in Central Africa. Trop Ecol 50:71–78

    Google Scholar 

  • Nyeko P, Olubayo M (2005) Participatory assessment of farmers’ experiences of termite problems in agroforestry in Tororo district. Agricultural Research and Extension Network

    Google Scholar 

  • Nyrop JP, Van der Werf W (1994) Sampling to predict or monitor biological control. In: Pedigo LP, Buntin GD (eds) Handbook of sampling methods for arthropods in agriculture. CRC Press, pp 246–336

  • Nyrop JP, Agnello AM, Kovach J, Reissig WH (1989) Binomial sequential classification sampling plans for European red mite (Acari: Tetranychidae) with special reference to performance criteria. J Econ Entomol 82:482–490

    Google Scholar 

  • Owolabi KE, Okunlola JO (2015) Farmers’ utilization of indigenous knowledge techniques for the control of cocoa pests and diseases in Ekiti state, Nigeria. Asian J Agric Extens Econ Sociol 4:247–258

    Google Scholar 

  • Oyedokun AV, Anikwe JC, Okelana FA, Mokwunye IU, Azeez OM (2011) Pesticidal efficacy of three tropical herbal plants’ leaf extracts against Macrotermes bellicosus, an emerging pest of cocoa Theobroma cacao L. J Biopest 4:131

    CAS  Google Scholar 

  • Rice RA, Greenberg R (2000) Cacao cultivation and the conservation of biological diversity. AMBIO J Hum Environ 29:167–173

    Google Scholar 

  • Riekert HF, Van den Berg J (2003) Evaluation of maize cultivars and rotation crops for resistance to damage by fungus-growing termites. S Afr J Plant Soil 20:72–75

    Google Scholar 

  • Rouland-Lefèvre C (2010) Termites as pests of agriculture. In: Bignell D, Roisin Y, Lo N (eds) Biology of termites: a modern Synthesis. Springer, Dordrecht, pp 499–517

    Google Scholar 

  • Ruesink WG (1980) Introduction to sampling theory. In: Kogan M, Herzog DC (eds) Sampling methods in soybean entomology. Springer, New York, NY, pp 61–78

    Google Scholar 

  • Saj S, Jagoret P, Etoa LE, Fonkeng EE, Tarla JN, Nieboukaho J-DE, Sakouma KM (2017) Lessons learned from the long-term analysis of cacao yield and stand structure in central Cameroonian agroforestry systems. Agric Syst 156:95–104

    Google Scholar 

  • Sands WA (1973) Termites as pests of tropical food crops. PANS Pest Articles News Summ 19:167–177

    Google Scholar 

  • Santoir C, Bopda A (1995) Atlas régional sud-Cameroun. Ed. ORSTOM

  • Schroth G, da Fonseca GAB, Harvey CA, Gascon C, Vasconcelos HL, Izac A-MN (2004) Agroforestry and biodiversity conservation in tropical landscapes. Island Press

    Google Scholar 

  • Sekamatte MB (2001) Termite situation on crops and rangelands in Nakasongola District. A report submitted to the Environmental Protection and Economic Development (EPED) project, Kampala, Uganda

  • Smith MA, Hepworth G (1992) Sampling statistics and a sampling plan for eggs of pea weevil (Coleoptera: Bruchidae). J Econ Entomol 85:1791–1796

    Google Scholar 

  • Southwood TRE (1978) The sampling programme and the measurement and description of dispersion. In: Southwood TRE (ed) Ecological methods. Springer, Dordrecht, pp 7–69

    Google Scholar 

  • Sperber CF, Nakayama K, Valverde MJ, de Neves F, S, (2004) Tree species richness and density affect parasitoid diversity in cacao agroforestry. Basic Appl Ecol 5:241–251. https://doi.org/10.1016/j.baae.2004.04.001

    Article  Google Scholar 

  • Stern VM (1973) Economic thresholds. Annu Rev Entomol 18:259–280

    Google Scholar 

  • Tadu Z, Djiéto-Lordon C, Youbi EM, Aléné CD, Fomena A, Babin R (2014) Ant mosaics in cocoa agroforestry systems of Southern Cameroon: influence of shade on the occurrence and spatial distribution of dominant ants. Agrofor Syst 88:1067–1079

    Google Scholar 

  • Taylor LR (1961) Aggregation, variance and the mean. Nature 189:732–735

    Google Scholar 

  • Taylor LR (1971) Aggregation as a species characteristic. In: Patil GP, Pielou EC, Waters WE (eds) Statistical ecology, vol. 1. Pennsylvania State University Press, University Park

  • Taylor LR (1984) Assessing and interpreting the spatial distributions of insect populations. Annu Rev Entomol 29:321–357

    Google Scholar 

  • Taylor LR, Woiwod IP, Perry JN (1978) The density-dependence of spatial behaviour and the rarity of randomness. J Anim Ecol 47:383–406

    Google Scholar 

  • Ténon C, Moïse AAA, Ahoua Y, Noël ZG, Philippe KK (2014) Dégâts des termites dans les pépinières de manguiers du nord de la Côte d’Ivoire (Korhogo) et essai de lutte par utilisation d’extraits aqueux de plantes. J Anim Plant Sci 22:3455–3468

    Google Scholar 

  • Theraulaz G, Gautrais J, Camazine S, Deneubourg J-L (2003) The formation of spatial patterns in social insects: from simple behaviours to complex structures. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 361:1263–1282

    Google Scholar 

  • Togola A, Kotoklo EA, Nwilene FE, Amevoin K, Glitho IA, Oyetunji OE, Kiepe P (2012) Specific diversity and damage of termites on upland rice in Benin. J Entomol 9:352–360

    Google Scholar 

  • Tra-Bi CS, Soro S, Yéboué NL, Tano Y, Konaté S (2015) termites impact on different age of Cocoa (Theobroma cocoa L.) plantations with different fertilizer treatments in semi- deciduous forest zone (Oume, Ivory Coast). Herald J Agric Food Sci Res 4:021–027

    Google Scholar 

  • Trippi VS (1990) Oxidative stress and senescence in oat leaves. In: Rodríguez R, Tamés RS, Durzan DJ (eds) Plant aging. Springer, Boston, MA, pp 231–237

    Google Scholar 

  • Trumble JT, Brewer MJ, Shelton AM, Nyrop JP (1989) Transportability of fixed-precision level sampling plans. Res Popul Ecol 31:325–342

    Google Scholar 

  • Tscharntke T et al (2011) Multifunctional shade-tree management in tropical agroforestry landscapes–a review. J Appl Ecol 48:619–629

    Google Scholar 

  • Umeh VC, Ivbijaro MF (1997) Termite abundance and damage in traditional maize-cassava intercrops in southwestern Nigeria. Int J Trop Insect Sci 17:315–321

    Google Scholar 

  • Vos JG, Ritchie BJ, Flood J (2003) Discovery learning about cocoa. An inspirational guide for training facilitators. CABI

    Google Scholar 

Download references

Acknowledgements

This study is part of the fellowship project (VW-60420894) of BDHB funded by the Volkswagen Foundation. We thank the Volkswagen foundation for the financial assistance provided to the first author for field work and for various analyses. We are particularly grateful to the staff of the Institut de Recherche Agricole pour le Développement (IRAD) for their support and hospitality. We also thank the Cameroonian cocoa farmers who made their plantations available to us and for their help and support during field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian T. L. Djuideu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djuideu, C.T.L., Bisseleua, H.D.B., Kekeunou, S. et al. Dispersion patterns and monitoring samplings of termite pests in cocoa agroforestry systems of Southern Cameroon. Appl Entomol Zool 56, 247–258 (2021). https://doi.org/10.1007/s13355-021-00731-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13355-021-00731-z

Keywords

Navigation