Skip to main content
Log in

Electroviscous effect on electromagnetohydrodynamic flows of Maxwell fluids in parallel plate microchannels

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Considering the influence of the streaming potential and electroviscous effects, the analytical solutions for electromagnetohydrodynamic (EMHD) flows in parallel plate microchannels are obtained. The electrolyte solutions in the microchannels are taken as generalized Maxwell fluids, and slip boundary conditions are adopted. To accurately analyze the EMHD flow characteristics, the variation trends of the electroviscous effects with the corresponding parameters must be understood. The results show that the electroviscous effects increase with the increase in the relaxation time De, the slip coefficient, and the wall zeta potential ψ̅0. However, the increase in the inverse of the electrical double-layer (EDL) thickness K, the electrical oscillating Reynolds number Re, and the ionic Péeclet number Pe can decrease the electroviscous effects. We also demonstrate that the electroviscous effect on the EMHD flows of generalized Maxwell fluids is larger than that of Newtonian fluids. This work will be useful in designing EMHD flows in parallel plate microchannels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHAO, G. P., JIAN, Y. J., and LI, F. Q. Streaming potential and heat transfer of nanofluids in parallel plate microchannels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 498, 239–247 (2016)

    Article  Google Scholar 

  2. CHANDA, S., SINHA, S., and DAS, S. Streaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters. Soft Matter, 10, 7558–7568 (2014)

    Article  Google Scholar 

  3. LI, F. Q., JIAN, Y. J., XIE, Z. Y., LIU, Y. B., and LIU, Q. S. Transient alternating current elec-troosmotic flow of a Jeffrey fluid through a polyelectrolyte-grafted nanochannel. RSC Advances, 7, 782–790 (2017)

    Article  Google Scholar 

  4. XIE, Z. Y. and JIAN, Y. J. Rotating electroosmotic flow of power-law fluids at high zeta potentials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 461, 231–239 (2014)

    Article  Google Scholar 

  5. CHANG, L., JIAN, Y. J., BUREN, M., LIU, Q. S., and SUN, Y. J. Electroosmotic flow through a microtube with sinusoidal roughness. Journal of Molecular Liquids, 220, 258–264 (2016)

    Article  Google Scholar 

  6. SI, D. Q. and JIAN, Y. J. Electromagnetohydrodynamic (EMHD) micropump of Jeffrey fluids through two parallel microchannels with corrugated walls. Journal of Physics D: Applied Physics, 48, 085501 (2015)

    Article  Google Scholar 

  7. SINHA, A. and SHIT, G. C. Electromagnetohydrodynamic flow of blood and heat transfer in a capillary with thermal radiation. Journal of Magnetism and Magnetic Materials, 378, 143–151 (2015)

    Article  Google Scholar 

  8. XIE, Z. Y. and JIAN, Y. J. Entropy generation of two-layer magnetohydrodynamic electroosmotic flow through microparallel channels. Energy, 139, 1080–1093 (2017)

    Article  Google Scholar 

  9. ZHAO, G. P., JIAN, Y. J., and LI, F. Q. Electromagnetohydrodynamic flow and heat transfer of nanofluid in a parallel plate microchannel. Journal of Mechanics, 33, 115–124 (2017)

    Article  Google Scholar 

  10. PAUL, D. and CHAKRABORTY, S. Wall effects in microchannel-based macromolecular separation under electromagnetohydrodynamic influences. Journal of Applied Physics, 102, 074921 (2007)

    Article  Google Scholar 

  11. SHIT, G. C, RANJIT, N. K., and SINHA, A. Electro-magnetohydrodynamic flow of biofluid induced by peristaltic wave: a non-Newtonian model. Journal of Bionic Engineering, 13, 436–448 (2016)

    Article  Google Scholar 

  12. LI, F. Q., JIAN, Y. J., XIE, Z. Y., and WANG, L. Electromagnetohydrodynamic flow of Powell-Eyring fluids in a narrow confinement. Journal of Mechanics, 33, 225–233 (2017)

    Article  Google Scholar 

  13. SHOJAEIAN, M. and SHOJAEIAN, M. Analytical solution of mixed electromagnetic/pressure driven gaseous flows in microchannels. Microfluidics and Nanofluidics, 12, 553–564 (2012)

    Article  Google Scholar 

  14. SHOJI, S., NAKAGAWA, S., and ESASHI, M. Micropump and sample injector for integrated chemical analysis systems. Sensors and Actuators A: Physical, 21, 189–192 (1990)

    Article  Google Scholar 

  15. IVERSON, B. D. and GARIMELLA, S. V. Recent advances in microscale pumping technologies: a review and evaluation. Microfluidics and Nanofluidics, 5, 145–174 (2008)

    Article  Google Scholar 

  16. WU, Z. and NGUYEN, N. T. Hydrodynamic focusing in microchannels under consideration of diffusive dispersion: theories and experiments. Sensors and Actuators B: Chemical, 107, 965–974 (2005)

    Article  Google Scholar 

  17. LASER, D. J. and SANTIAGO, J. G. A review of micropumps. Journal of Micromechanics and Microengineering, 14, R35 (2004)

    Article  Google Scholar 

  18. DAS, S., DAS, T., and CHAKRABORTY, S. Modeling of coupled momentum, heat and solute transport during DNA hybridization in a microchannel in the presence of electro-osmotic effects and axial pressure gradients. Microfluidics and Nanofluidics, 2, 37–49 (2006)

    Article  Google Scholar 

  19. JIAN, Y. J. Transient MHD heat transfer and entropy generation in a microparallel channel combined with pressure and electroosmotic effects. International Journal of Heat and Mass Transfer, 89, 193–205 (2015)

    Article  Google Scholar 

  20. JIAN, Y. J., SI, D. Q., CHANG, L., and LIU, Q. S. Transient rotating electromagnetohydrodynamic micropumps between two infinite microparallel plates. Chemical Engineering Science, 134, 12–22 (2015)

    Article  Google Scholar 

  21. CHAKRABORTY, S. and PAUL, D. MicroChannel flow control through a combined electromagnetohydrodynamic transport. Journal of Physics D: Applied Physics, 39, 5364 (2006)

    Article  Google Scholar 

  22. QIAN, S. and BAU, H. H. Magneto-hydrodynamics based microfluidics. Mechanics Research Communications, 36, 10–21 (2009)

    Article  Google Scholar 

  23. SRINIVASA, C. T., SINGH, J. K., GIREESHA, B. J., and ARCHANA, M. Effect of variable fluid properties on magnetohyrodtnamic flow of nanofluid past a flat plate. Journal of Nanofluids, 8, 520–525 (2019)

    Article  Google Scholar 

  24. CHAKRABORTY, R., DEY, R., and CHAKRABORTY, S. Thermal characteristics of electromagnetohydrodynamic flows in narrow channels with viscous dissipation and Joule heating under constant wall heat flux. International Journal of Heat and Mass Transfer, 67, 1151–1162 (2013)

    Article  Google Scholar 

  25. RANJIT, N. K. and SHIT, G. C. Joule heating effects on electromagnetohydrodynamic flow through a peristaltically induced micro-channel with different zeta potential and wall slip. Physica A: Statistical Mechanics and Its Applications, 482, 458–476 (2017)

    Article  MathSciNet  Google Scholar 

  26. AYUB, M., ABBAS, T., and BHATTI, M. M. Inspiration of slip effects on electromagnetohydro-dynamics (EMHD) nanofluid flow through a horizontal Riga plate. The European Physical Journal Plus, 131, 193 (2016)

    Article  Google Scholar 

  27. BUREN, M. and JIAN, Y. J. Electromagnetohydrodynamic (EMHD) flow between two transversely wavy microparallel plates. Electrophoresis, 36, 1539–1548 (2015)

    Article  Google Scholar 

  28. ESCANDON, J., SANTIAGO, F., BAUTISTA, O., and MENDEZ, F. Hydrodynamics and thermal analysis of a mixed electromagnetohydrodynamic-pressure driven flow for Phan-Thien-Tanner fluids in a microchannel. International Journal of Thermal Sciences, 86, 246–257 (2014)

    Article  Google Scholar 

  29. HUSSAIN, F., ELLAHI, R., and ZEESHAN, A. Mathematical models of electromagnetohydrodynamic multiphase flows synthesis with nano-sized hafnium particles. Applied Sciences, 8, 275 (2018)

    Article  Google Scholar 

  30. MIRZA, I. A., ABDULHAMEED, M., VIERU, D., and SHAFIE, S. Transient electro-magneto-hydrodynamic two-phase blood flow and thermal transport through a capillary vessel. Computer Methods and Programs in Biomedicine, 137, 149–166 (2016)

    Article  Google Scholar 

  31. ABDULHAMEED, M., VIERU, D., and ROSLAN, R. Modeling electro-magneto-hydrodynamic thermo-fluidic transport of biofluids with new trend of fractional derivative without singular kernel. Physica A: Statistical Mechanics and Its Applications, 484, 233–252 (2017)

    Article  MathSciNet  Google Scholar 

  32. ABDULHAMEED, M., VIERU, D., and ROSLAN, R. Magnetohydrodynamic electroosmotic flow of Maxwell fluids with Caputo-Fabrizio derivatives through circular tubes. Computers and Mathematics with Applications, 74, 2503–2519 (2017)

    Article  MathSciNet  Google Scholar 

  33. ABBAS, T., HAYAT, T., AYUB, M., BHATTI, M. M., and ALSAEDI, A. Electromagnetohy-drodynamic nanofluid flow past a porous Riga plate containing gyrotactic microorganism. Neural Computing and Applications, 31(6), 1905–1913 (2019)

    Article  Google Scholar 

  34. TRIPATHI, D., JHORAR, R., BEG, O. A., and KADIR, A. Electro-magneto-hydrodynamic peristaltic pumping of couple stress biofluids through a complex wavy micro-channel. Journal of Molecular Liquids, 236, 358–367 (2017)

    Article  Google Scholar 

  35. JANG, J. and LEE, S. S. Theoretical and experimental study of MHD (magnetohydrodynamic) micropump. Sensors and Actuators A: Physical, 80, 84–89 (2000)

    Article  Google Scholar 

  36. LIU, Y. B., JIAN, Y. J., and TAN, W. C. Entropy generation of electromagnetohydrodynamic (EMHD) flow in a curved rectangular microchannel. International Journal of Heat and Mass Transfer, 127, 901–913 (2018)

    Article  Google Scholar 

  37. CHAKRABORTY, S. and PAUL, D. MicroChannel flow control through a combined electromagnetohydrodynamic transport. Journal of Physics D: Applied Physics, 39, 5364 (2006)

    Article  Google Scholar 

  38. MUNSHI, F. and CHAKRABORTY, S. Hydro-electrical energy conversion in narrow confinements in presence of transverse magnetic fields with electrokinetic effects. Physics of Fluids, 21, 122003 (2009)

    Article  Google Scholar 

  39. SARKAR, S., GANGULY, S., and CHAKRABORTY, S. Influence of combined electromagneto-hydrodynamics on microchannel flow with electrokinetic effect and interfacial slip. Microfluidics and Nanofluidics, 21, 56 (2017)

    Article  Google Scholar 

  40. CHEN, X. Y., JIAN, Y. J., XIE, Z. Y., and DING, Z. D. Thermal transport of electromagnetohydrodynamic in a microtube with electrokinetic effect and interfacial slip. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 540, 194–206 (2018)

    Article  Google Scholar 

  41. LIU, Y. P., JIAN, Y. J., LIU, Q. S., and LI, F. Q. Alternating current magnetohydrodynamic electroosmotic flow of Maxwell fluids between two micro-parallel plates. Journal of Molecular Liquids, 211, 784–791 (2015)

    Article  Google Scholar 

  42. ZHAO, G. P., JIAN, Y. J., CHANG, L., and BUREN, M. Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field. Journal of Magnetism and Magnetic Materials, 387, 111–117 (2015)

    Article  Google Scholar 

  43. SARKAR, S., GANGULY, S., and DUTTA, P. Electrokinetically induced thermofluidic transport of power-law fluids under the influence of superimposed magnetic field. Chemical Engineering Science, 171, 391–403 (2017)

    Article  Google Scholar 

  44. LU, F., YANG, J., and KWOK, D. Y. Flow field effect on electric double layer during streaming potential measurements. The Journal of Physical Chemistry B, 108, 14970–14975 (2004)

    Article  Google Scholar 

  45. UNTER, R. J. Foundation of Colloid Science, Oxford University Press, New York (2001)

    Google Scholar 

  46. BANDOPADHYAY, A. and CHAKRABORTY, S. Giant augmentations in electro-hydro-dynamic energy conversion efficiencies of nanofluidic devices using viscoelastic fluids. Applied Physics Letters, 101, 043905 (2012)

    Article  Google Scholar 

  47. DAS, S., GUHA, A., and MITRA, S. K. Exploring new scaling regimes for streaming potential and electroviscous effects in a nanocapillary with overlapping electric double layers. Analytica Chimica Acta, 804, 159–166 (2013)

    Article  Google Scholar 

  48. BIRD, R. B., STEWART, W. E., and LIGHTFOOT, E. N. Transport Phenomena, 2nd ed., Wiley-Interscience, New York (2001)

    Google Scholar 

  49. BIRD, R. B., ARMSTRONG, R. C, and HASSAGER, O. Dynamics of Polymeric Liquids, Fluid Mechanics, 2nd ed., Wiley-Interscience, New York (1987)

    Google Scholar 

  50. JIAN, Y. J., LI, F. Q., LIU, Y. B., CHANG, L., LIU, Q. S., and YANG, L. G. Electrokinetic energy conversion efficiency of viscoelastic fluids in a polyelectrolyte-grafted nanochannel. Colloids and Surfaces B: Biointerfaces, 156, 405–413 (2017)

    Article  Google Scholar 

  51. BANDOPADHYAY, A. and CHAKRABORTY, S. Electrokinetically induced alterations in dynamic response of viscoelastic fluids in narrow confinements. Physical Review E, 85, 056302 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Jian.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11772162 and 11472140), the Inner Mongolia Autonomous Region Grassland Talent of China (No. 12000-12102013), and the Natural Science Foundation of Inner Mongolia Autonomous Region of China (No. 2016MS0106)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Jian, Y. Electroviscous effect on electromagnetohydrodynamic flows of Maxwell fluids in parallel plate microchannels. Appl. Math. Mech.-Engl. Ed. 40, 1457–1470 (2019). https://doi.org/10.1007/s10483-019-2526-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-019-2526-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation