Skip to main content
Log in

Influence of combined electromagnetohydrodynamics on microchannel flow with electrokinetic effect and interfacial slip

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We investigate analytically the combined consequences of electromagnetohydrodynamic forces and interfacial slip on streaming potential mediated pressure-driven flow in a microchannel. Going beyond traditional Debye–Hückel limit, we first derive a closed-form analytical solution for velocity field by considering nonlinear electrical potential distribution, wall slip effects, externally imposed transverse magnetic field, and laterally applied electric field in the plane of flow. The effects of electrical double-layer (EDL) formation and the consequent interfacial phenomena are critically examined under such situations. An expression for induced streaming potential in the microchannel is deduced considering EDL formation and the consequences of finite conductance of the immobilized Stern layer. This simplified analytical expression is later on critically assessed against three-dimensional simulation paradigm of streaming potential mediated flows, which is a first effort of this kind. We demonstrate that flow rate increases progressively with increasing surface potential and eventually approaches to a limiting value. Combination of electromagnetohydrodynamic effect with liquid slip is shown to amplify the flow rate, even at lower values of surface potential. Our study brings out the possibility of achieving an optimum flow rate by judicious application of combined electromagnetohydrodynamics. The present analysis has significant consequence in the design of advanced microfluidic devices with improved efficiency and functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ajdari A, Bocquet L (2006) Giant amplification of interfacially driven transport by hydrodynamic slip: Diffusio-Osmosis and beyond. Phys Rev Lett 96:186102-1–186102-4

    Article  Google Scholar 

  • Ban H, Lin B, Song Z (2010) Effect of electrical double layer on electric conductivity and pressure drop in a pressure-driven microchannel flow. Biomicrofluidics 4:014104-1–01410413

    Article  Google Scholar 

  • Bandopadhyay A, Chakraborty S (2012) Electrokinetically induced alterations in dynamic response of viscoelastic fluids in narrow confinements. Phys Rev E 85:056302

    Article  Google Scholar 

  • Bazant MZ, Kilic MS, Storey BD, Ajdari A (2009) Nonlinear electrokinetics at large voltages. New J Phys 11:075016-1–075016-9

    Article  Google Scholar 

  • Behrens SH, Grier DG (2001) The charge of glass and silica surfaces. J Chem Phys 115:6716–6721

    Article  Google Scholar 

  • Berg P, Ladipo K (2009) Exact solution of an electro-osmotic flow problem in a cylindrical channel. Proc R Soc Lond Ser A 465:2663–2679

    Article  MATH  Google Scholar 

  • Bruus H (2008) Theoretical microfluidics. Oxford University Press, New York

    Google Scholar 

  • Chakraborty S, Paul D (2006) Microchannel flow control through a combined electromagnetohydrodynamic transport. J Phys D Appl Phys 39:5364–5371

    Article  Google Scholar 

  • Das S, Chakraborty S (2010) Effect of conductivity variations within the electric double layer on the streaming potential estimation in narrow fluidic confinements. Langmuir 26:11589–11596

    Article  Google Scholar 

  • Das S, Das T, Chakraborty S (2006) Modeling of coupled momentum, heat and solute transport during DNA hybridization in a microchannel in the presence of electro-osmotic effects and axial pressure gradients. Microfluid Nanofluid 2:37–49

    Article  Google Scholar 

  • Das S, Chakraborty S, Mitra SK (2012) Magnetohydrodynamics in narrow fluidic channels in presence of spatially non-uniform magnetic fields: framework for combined magnetohydrodynamic and magnetophoretic particle transport. Microfluid Nanofluid 13:799–807

    Article  Google Scholar 

  • Davidson C, Xuan X (2008) Electrokinetic energy conversion in slip nanochannels. J Power Sources 179:297–300

    Article  Google Scholar 

  • Dutta P, Beskok A (2001) Analytical solution of time periodic electroosmotic flows: analogies to Stokes’ second problem. Anal Chem 73:5097–5102

    Article  Google Scholar 

  • Duwairi H, Abdullah M (2007) Thermal and flow analysis of a magneto-hydrodynamic micropump. Microsyst Technol 13:33–39

    Article  Google Scholar 

  • Erickson D, Li D (2001) Streaming potential and streaming current methods for characterizing heterogeneous solid surfaces. J Colloid Interface Sci 237:283–289

    Article  Google Scholar 

  • Erickson D, Li D (2002) Microchannel flow with patchwise and periodic surface heterogeneity. Langmuir 18:8949–8959

    Article  Google Scholar 

  • Furlani EP (2006) Analysis of particle transport in a magnetophoretic microsystem. J Appl Phys 99: 024912(1–11)

  • Ganguly S, Sarkar S, Hota TK, Mishra M (2015) Thermally developing combined electroosmotic and pressure-driven flow of nanofluids in a microchannel under the effect of magnetic field. Chem Eng Sci 126:10–21

    Article  Google Scholar 

  • Garcia L, Ista LK, Petsev DN, O’Brien MJ, Bisong P, Mammoli AA, Brueck SRJ, López GP (2005) Electrokinetic molecular separation in nanoscale fluidic channels. Lab Chip 5:1271–1276

    Article  Google Scholar 

  • Goswami P, Chakraborty S (2010) Energy transfer through streaming effects in time-periodic pressure-driven nanochannel flows with interfacial slip. Langmuir 26:581–590

    Article  Google Scholar 

  • Halpern D, Wei H-H (2007) Electroosmotic flow in a microcavity with nonuniform surface charges. Langmuir 23:9505–9512

    Article  Google Scholar 

  • Holt JK, Park HG, Wang Y, Stadermann M, Artyukhin AB, Grigoropoulos CP, Noy A, Bakajin O (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312:1034–1037

    Article  Google Scholar 

  • Homsy A, Koster S, Eijkel JCT, van den Berg A, Lucklum F, Verpoorte E, de Rooij NF (2005) A high current density DC magnetohydrodynamic (MHD) micropump. Lab Chip 5(4):466–471

    Article  Google Scholar 

  • Huang P, Guasto JS, Breuer KS (2006) Direct measurement of slip velocities using three-dimensional total internal reflection velocimetry. J Fluid Mech 566:447–464

    Article  MATH  Google Scholar 

  • Hunter RJ (2001) Foundation of colloid science. Oxford Univ Press, New York

    Google Scholar 

  • Jang J, Lee SS (2000) Theoretical and experimental study of MHD (magnetohydrodynamic) micropump. Sens Actuators A 80:84–89

    Article  Google Scholar 

  • Lauga E, Brenner MP (2004) Dynamic mechanisms for apparent slip on hydrophobic surfaces. Phys Rev E 70:026311

    Article  Google Scholar 

  • Leal LG (2007) Advanced transport phenomena. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Lim J, Lanni C, Evarts ER, Lanni F, Tilton RD, Majetich SA (2011) Magnetophoresis of nanoparticles. ACS Nano 5:217–226

    Article  Google Scholar 

  • Madou M, Zoval J, Jia G, Kido H, Kim J, Kim N (2006) Lab on a CD. Annu Rev Biomed Eng 8:601–628

    Article  Google Scholar 

  • Majumder M, Chopra N, Andrews R, Hinds BJ (2005) Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438:44

    Article  Google Scholar 

  • Mondal PK, DasGupta D, Bandopadhyay A, Ghosh U, Chakraborty S (2015) Contact line dynamics of electroosmotic flows of incompressible binary fluid system with density and viscosity contrasts. Phys Fluids 27:032109

    Article  Google Scholar 

  • Moreau RJ (1990) Magnetohydrodynamics. Springer

  • Munshi F, Chakraborty S (2009) Hydro-electrical energy conversion in narrow confinements in presence of transverse magnetic fields with electrokinetic effects. Phys Fluids 21: 122003 (1–9)

  • Nguyen NT (2012) Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluid 12:1–16

    Article  Google Scholar 

  • Ohshima H (2006) Theory of colloid and interfacial electric phenomena. Elsevier/Academic Press, Amsterdam

    Google Scholar 

  • Pamme N (2006) Magnetism and microfluidics. Lab Chip–Miniaturisation Chem Biol. 6:24–38

    Article  Google Scholar 

  • Park H, Kim T (2007) Simultaneous estimation of zeta potential and slip coefficient in hydrophobic microchannels. Anal Chim Acta 593:171–177

    Article  Google Scholar 

  • Patankar NA, Hu HH (1998) Numerical simulation of electroosmotic flow. Anal Chem 70:1870–1881

    Article  Google Scholar 

  • Probstein RF (1994) Physicochemical hydrodynamics. Willey, New York, USA

    Book  Google Scholar 

  • Sarkar S, Ganguly S (2015) Fully developed thermal transport in combined pressure and electroosmotically driven flow of nanofluid in a microchannel under the effect of a magnetic field. Microfluid Nanofluid 18:623–636

    Article  Google Scholar 

  • Sbragaglia M, Benzi R, Biferale L, Succi S, Toschi F (2006) Surface roughness-hydrophobicity coupling in microchannel and nanochannel flows. Phys Rev Lett 97:204503

    Article  Google Scholar 

  • Seaborn JB (1991) Hypergeometric functions and their applications. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  • Steinberger A, Cottin-Bizonne C, Kleimann P, Charlaix E (2007) High friction on a bubble mattress. Nat Mater 6:665–668

    Article  Google Scholar 

  • Tretheway DC, Meinhart CD (2004) A generating mechanism for apparent fluid slip in hydrophobic microchannels. Phys Fluids 16:1509–1515

    Article  MATH  Google Scholar 

  • Tso CP, Sundaravadivelu K (2001) Capillary flow between parallel plates in the presence of an electromagnetic field. J Phys D 34:3522–3527

    Article  Google Scholar 

  • Tyrrell JWG, Attard P (2001) Images of nanobubbles on hydrophobic surfaces and their interactions. Phys Rev Lett 87:176104-1–176104-4

    Article  Google Scholar 

  • Weston MC, Gerner MD, Fritsch I (2010) Magnetic fields for fluid motion. Anal Chem 82:3411–3418

    Article  Google Scholar 

  • Xuan X, Li D (2004) Joule heating effect on peak broadening in capillary zone electrophoresis. J Micromech Microeng 14:1171–1180

    Article  Google Scholar 

  • Yang J, Kwok DY (2003a) Effect of liquid slip in electrokinetic parallel-plate microchannel flow. J Colloid Interface Sci 260:225–233

    Article  Google Scholar 

  • Yang J, Kwok DYJ (2003b) Analytical treatment of flow in infinitely extended circular microchannels and the effect of slippage to increase flow efficiency. J Micromech Microeng 13:115

    Article  Google Scholar 

  • Yang J, Kwok DYJ (2003c) Microfluid flow in circular microchannel with electrokinetic effect and navier’s slip Condition. Langmuir 19:1047

    Article  Google Scholar 

  • Zhu Y, Granick S (2001) Rate-dependent slip of Newtonian liquid at smooth surfaces. Phys Rev Lett 87:96105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Chakraborty.

Appendix: Solution of Eq. (11)

Appendix: Solution of Eq. (11)

Equation 11 is a second-order non-homogeneous differential equation with constant coefficients. The general solution of Eq. (11) takes the following form,

$$u\left( y \right) = u_{aux} + u_{PI}$$
(29)

where u aux is the solution of the auxiliary homogeneous part of the equation and u PI is the particular integral. To find u aux, we need to solve the homogeneous auxiliary equation of Eq. (11) in the form,

$$m^{2} - Ha^{2} = 0$$
(30)

where u aux(y) = e my, (m being a constant) is an arbitrary solution of the homogeneous auxiliary equation.This finally gives the solution of the auxiliary equation as,

$$u_{\text{aux}} = C_{1} \exp \left( {Ha\,y} \right) + C_{2} \exp \left( { - Ha\,y} \right)$$
(31)

where C 1 and C 2 are the constants. We decompose the particular integral by the method of superposition as,

$$u_{PI} = u_{PI1} + u_{PI2}$$
(32)

The first part of the particular integral u PI1 is evaluated as,

$$u_{PI1} = \frac{1}{{D^{2} - Ha^{2} }}\left\{ { - \left( {1 + Ha^{2} S} \right)} \right\} = \frac{{1 + Ha^{2} S}}{{Ha^{2} }}$$
(33)

For the second part of the particular integral u PI2, we use the variation of parameter method. Accordingly, we may write u PI2 in the form of

$$u_{PI2} = a_{1} u_{1} + a_{2} u_{2}$$
(34)

where u 1 = exp (Hay), u 2 = exp (−Hay).

Therefore, u PI2 = a 1 exp (Hay) + a 2 exp (−Hay). The unknown parameters a 1 and a 2 are calculated as

$$a_{1} = \int {\frac{ - F}{W}} \,u_{2} \,\text{d}y,\;a_{2} = \int {\frac{F}{W}} \,u_{1} \,\text{d}y$$
(35)

where

$$F = - \left( {\frac{{4pr^{2} E}}{\zeta }} \right)\left[ {\frac{{\exp \left\{ { - r\left( {1 - y} \right)} \right\} + p^{2} \exp \left\{ { - 3r\left( {1 - y} \right)} \right\}}}{{\left[ {1 - p^{2} \exp \left\{ { - 2r\left( {1 - y} \right)} \right\}} \right]^{2} }}} \right]$$

W is the Wronksian for the system and is given by, \(W = \left| {\begin{array}{*{20}c} {u_{1} } & {u_{2} } \\ {u^{\prime}_{1} } & {u^{\prime}_{2} } \\ \end{array} } \right| = - 2\,Ha.\)

We proceed further in evaluating the particular integrals to obtain the general solution of Eq. (11) as follows

$$\begin{aligned} u\left( y \right) & = C_{1} \exp \left( {Ha\,y} \right) + C_{2} \exp \left( { - Ha\,y} \right) + \frac{{1 + Ha^{2} S}}{{Ha^{2} }} \\ & - \frac{2prE}{\zeta }\exp \left\{ { - r\left( {1 - y} \right)} \right\}\left[ {\frac{{{}_{2}F_{1} \left( {1,\frac{r - Ha}{2r};\frac{3}{2} - \frac{Ha}{2r};p^{2} \exp \left\{ { - 2r\left( {1 - y} \right)} \right\}} \right)}}{r - Ha}} \right. \\ & \left. { + \frac{{{}_{2}F_{1} \left( {1,\frac{r + Ha}{2r};\frac{3}{2} + \frac{Ha}{2r};p^{2} \exp \left\{ { - 2r\left( {1 - y} \right)} \right\}} \right)}}{r + Ha}} \right] \\ \end{aligned}$$
(36)

Imposing boundary as described in Eqs. (12a)–(12b), the constants C 1 and C 2 are evaluated as,

$$C_{1} = \frac{2prEG}{\zeta Ha} - \frac{{\frac{{1 + Ha^{2} S}}{{Ha^{2} }} + \frac{2prE}{\zeta }\left\{ {G_{1} + \frac{{G\left( {1 - \beta Ha} \right)\exp \left( {Ha} \right)}}{Ha}} \right\}}}{{2\left\{ {\cosh \left( {Ha} \right) - \beta Ha\sinh \left( {Ha} \right)} \right\}}}$$
$$C_{2} = - \frac{{\frac{{1 + Ha^{2} S}}{{Ha^{2} }} + \frac{2prE}{\zeta }\left\{ {G_{1} + \frac{{G\left( {1 - \beta Ha} \right)\exp \left( {Ha} \right)}}{Ha}} \right\}}}{{2\left\{ {\cosh \left( {Ha} \right) - \beta Ha\sinh \left( {Ha} \right)} \right\}}}$$

where the constant terms G and G 1 are given by Eqs. (14a)–(14b).

Substituting the expressions for C 1 and C 2 in Eq. (36) and after some simplifications, one can obtain the closed-form analytical solution of u(y), as expressed in Eq. (13).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S., Ganguly, S. & Chakraborty, S. Influence of combined electromagnetohydrodynamics on microchannel flow with electrokinetic effect and interfacial slip. Microfluid Nanofluid 21, 56 (2017). https://doi.org/10.1007/s10404-017-1894-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-017-1894-7

Keywords

Navigation