Skip to main content
Log in

Analytical solution of mixed electromagnetic/pressure driven gaseous flows in microchannels

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The influences of wall-slip/jump conditions on the fluid flow and heat transfer for hydrodynamically and thermally fully developed electrically conducting gaseous flow subject to an electromagnetic field inside a parallel plate microchannel with constant heat flux at walls are studied under the assumptions of a low-magnetic Reynolds number. The governing equations are non-dimensionalized and then analytical solutions are derived for the friction and the heat transfer coefficients. The fluid flow and the heat transfer characteristics obtained in the analytical solutions are discussed in detail for different parameters such as the Knudsen, Hartmann, and Brinkman numbers. The velocity profiles verify that even with a constant Knudsen number, applying a stronger electromagnetic field gives rise to an increase in the slip velocity. The results also reveal that on increasing the Hartmann number, the heat transfer rate as well as the friction factor is enhanced, whereas it tends to suppress the movement of the fluid. Further, it is found that the Nusselt and the Poiseuille numbers are less sensitive to the electromagnetic field effects with increase in rarefaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

A :

Constant parameter, \( \frac{RePr}{{T_{\text{s}} - T_{\text{i}} }}\frac{{{\text{d}}T_{\text{w}} }}{{{\text{d}}x}} \)

B :

Magnetic field strength

Br :

Brinkman number

c p :

Specific heat at constant pressure

D :

Hydraulic diameter

E :

Electric field strength

f :

Friction factor

H :

Height of channel

Ha :

Hartmann number

k :

Thermal conductivity of fluid

K :

E/(U m B)

Kn :

Knudsen number

L :

Characteristic length

Nu :

Nusselt number

p :

Pressure

Po :

Poiseuille number, f Re

Pr :

Prandtl number

Re :

Reynolds number

Re m :

Magnetic Reynolds number, σμ m U m L

S :

Cross-section area

T :

Temperature

U, V :

Dimensional velocity component in the x, y directions

u, v :

Dimensionless velocity component in the x, y directions

U i :

Inlet velocity

U m :

Mean velocity

X, Y:

Dimensional position in coordinate system

x, y :

Dimensionless position in coordinate system

γ :

Specific heat ratio of fluid

λ :

Mean free path

μ :

Dynamic viscosity of fluid

μ m :

Magnetic permeability

ρ :

Density of fluid

θ :

Dimensionless temperature

σ :

Electric conductivity

σ v :

Tangential momentum accommodation coefficient

σ T :

Thermal accommodation coefficient

γ :

Specific heat ratio of fluid

a:

Pure electromagnetic field

i:

Fluid properties at the inlet

m:

Mean

s:

Fluid properties at the wall

w:

Wall

References

  • Agarwal RK (2005) Lattice Boltzmann simulations of magnetohydrodynamics slip flow in microchannels. In: 36th AIAA plasmadynamics and lasers conference, AIAA, Toronto, pp 2005–4782

  • Alpher RA (1961) Heat transfer in magnetohydrodynamics flow between parallel plates. Int J Heat Mass Transfer 3:108–112

    Article  Google Scholar 

  • Ameel TA, Wang XM, Barron RF, Warrington RO (1997) Laminar forced convection in a circular tube with constant heat flux and slip flow. Microscale Therm Eng 1:303–320

    Article  Google Scholar 

  • Cai C, Liu D (2009) Asymptotic solutions for low-magnetic-Reynolds-number gas flows inside a two-dimensional channel. AIAA J 47:542–551

    Article  Google Scholar 

  • Duwairi H, Abdollah M (2007) Thermal and flow analysis of a magnetohydrodynamic micropump. Microsyst Technol 13:33–39

    Article  Google Scholar 

  • Feng S, Dong P, Zhong LH (2006) A lattice Boltzmann model for two-dimensional magnetohydrodynamics. Chin Phys Lett 23:2823–2826

    Article  Google Scholar 

  • Ghassemi M, Rezaeinezhad H, Shahidian A (2008) Analytical analysis of flow in a magnetohydrodynamic pump (MHD). In: 14th symposium on electromagnetic launch technology, June, Victoria, pp 1–4

  • Gupta RC (1992) Laminar magnetohydrodynamic flow development in a channel. Mech Res Commun 19:73–80

    Article  MATH  Google Scholar 

  • Hooman K (2008) A superposition approach to study slip-flow forced convection in straight microchannels of uniform but arbitrary cross-section. Int J Heat Mass Transfer 51:3753–3762

    Article  MATH  Google Scholar 

  • Inman RM (1964) Laminar slip flow heat transfer in a parallel plate channel or a tube with uniform wall heating. NASA Report D-2393

  • Jang J, Lee SS (2000) Theoretical and experimental study of MHD micropump. Sensor Actuat A 80:84–89

    Article  Google Scholar 

  • Kavehpour HP, Faghri M, Asako Y (1997) Effects of compressibility and rarefaction on gaseous flows in microchannels. Numer Heat Tran Part A-Appl 32:677–696

    Article  Google Scholar 

  • Lemoff AV, Lee AP (2000) An AC electrohydrodynamic micropump. Sensor Actuat B 63:178–185

    Article  Google Scholar 

  • Maxwell JC (1879) On stresses in rarefied gases arising from inequalities of temperature. Phil Trans R Soc Lond 170:231–256

    Article  MATH  Google Scholar 

  • Morini GL (2004) Single-phase convective heat transfer in microchannels: a review of experimental results. Int J Therm Sci 43:631–651

    Article  Google Scholar 

  • Obot NT (2002) Toward a better understanding of friction and heat/mass transfer in microchannels-a literature review. Microscale Thermophys Eng 6:155–173

    Article  Google Scholar 

  • Palm B (2001) Heat transfer in microchannels. Microscale Therm Eng 5:155–175

    Article  Google Scholar 

  • Renksizbulut M, Niazmand H, Tercan G (2006) Slip-flow and heat transfer in rectangular microchannels with constant wall temperature. Int J Therm Sci 45:870–881

    Article  Google Scholar 

  • Shams M, Shojaeian M, Aghanajafi C, Dibaji SAR (2009) Numerical simulation of slip flow through rhombus microchannels. Int Commun Heat Mass Transfer 36:1075–1081

    Article  Google Scholar 

  • Shojaeian M, Dibaji SAR (2010) Three-dimensional numerical simulation of the slip flow through triangular microchannels. Int Commun Heat Mass Transfer 37:324–329

    Article  Google Scholar 

  • Smoluchowski VM (1898) Ueber wärmeleitung in verdünnten gasen. Annalen der Physik und Chemie 64:101–130

    Google Scholar 

  • Soundalgekar VM (1967) MHD channel flow of an electrically conducting, incompressible, viscous, rarefied gas as affected by wall electrical conductances. Proc Natl Inst Sci India Part A 33:276–280

    MATH  Google Scholar 

  • Soundalgekar VM (1969a) Steady MHD Couette flow between two conducting walls of an electrically conducting, viscous, incompressible rarefied gas. Proc Natl Inst Sci India Part A 35:251–261

    Google Scholar 

  • Soundalgekar VM (1969b) On heat transfer in MHD channel flow in slip-flow regime. Proc Natl Inst Sci India Part A 35:439–445

    Google Scholar 

  • Tunc G, Bayazitoglu Y (2002) Heat transfer in rectangular microchannels. Int J Heat Mass Transfer 45:765–773

    Article  MATH  Google Scholar 

  • Verardi SLL, Cardoso JR, Motta CC (1998) A solution of two-dimensional magnetohydrodynamic flow using the finite element method. IEEE T Magn 34:3134–3137

    Article  Google Scholar 

  • Verardi SLL, Machado JM, Cardoso JR (2002) The element-free Galerkin method applied to the study of fully developed magnetohydrodynamic duct flows. IEEE Trans Magn 38:941–944

    Article  Google Scholar 

  • Wang PJ, Chang CY, Chang ML (2004) Simulation of two-dimensional fully developed laminar flow for a magneto-hydrodynamic (MHD) pump. Biosens Bioelectron 20:115–121

    Article  Google Scholar 

  • Xu B, Ooi KT, Mavriplis C, Zaghloul ME (2003) Evaluation of viscous dissipation in liquid flow in microchannels. J Micromech Microeng 13:53–57

    Article  Google Scholar 

  • Yu S, Ameel TA (2001) Slip flow heat in rectangular microchannels. Int J Heat Mass Transfer 44:4225–4234

    Article  MATH  Google Scholar 

  • Zhao H (2001) The numerical solution of gaseous slip flows in microtubes. Int Commun Heat Mass Transfer 28:585–594

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Shojaeian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shojaeian, M., Shojaeian, M. Analytical solution of mixed electromagnetic/pressure driven gaseous flows in microchannels. Microfluid Nanofluid 12, 553–564 (2012). https://doi.org/10.1007/s10404-011-0897-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-011-0897-z

Keywords

Navigation