Skip to main content
Log in

A unified gas-kinetic scheme for multiscale and multicomponent flow transport

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Compressible flows exhibit a diverse set of behaviors, where individual particle transports and their collective dynamics play different roles at different scales. At the same time, the atmosphere is composed of different components that require additional degrees of freedom for representation in computational fluid dynamics. It is challenging to construct an accurate and efficient numerical algorithm to faithfully represent multiscale flow physics across different regimes. In this paper, a unified gas-kinetic scheme (UGKS) is developed to study non-equilibrium multicomponent gaseous flows. Based on the Boltzmann kinetic equation, an analytical space-time evolving solution is used to construct the discretized equations of gas dynamics directly according to cell size and scales of time steps, i.e., the so-called direct modeling method. With the variation in the ratio of the numerical time step to the local particle collision time (or the cell size to the local particle mean free path), the UGKS automatically recovers all scale-dependent flows over the given domain and provides a continuous spectrum of the gas dynamics. The performance of the proposed unified scheme is fully validated through numerical experiments. The UGKS can be a valuable tool to study multiscale and multicomponent flow physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BIRD, G. A. Molecular Gas Dynamics and the Direct Simulation Monte Carlo of Gas Flows, Clarendon, Oxford (1994)

    Google Scholar 

  2. CHAPMAN, S. and COWLING, T. G. The Mathematical Theory of Non-Uniform Gases: an Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, Cambridge University Press, Cambridge (1970)

    MATH  Google Scholar 

  3. ABGRALL, R. How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. Journal of Computational Physics, 125(1), 150–160 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. FEDKIW, R. P., ASLAM, T., MERRIMAN, B., and OSHER, S. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). Journal of Computational Physics, 152(2), 457–492 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. SAUREL, R. and ABGRALL, R. A simple method for compressible multifluid flows. SIAM Journal on Scientific Computing, 21(3), 1115–1145 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. XIAO, T., XU, K., CAI, Q., and QIAN, T. An investigation of non-equilibrium heat transport in a gas system under external force field. International Journal of Heat and Mass Transfer, 126, 362–379 (2018)

    Article  Google Scholar 

  7. XU, K. Direct Modeling for Computational Fluid Dynamics: Construction and Application of Unified Gas-Kinetic Schemes, World Scientific, Singapore (2015)

    Book  MATH  Google Scholar 

  8. XU, K. and HUANG, J. C. A unified gas-kinetic scheme for continuum and rarefied flows. Journal of Computational Physics, 229(20), 7747–7764 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. XIAO, T., CAI, Q., and XU, K. A well-balanced unified gas-kinetic scheme for multi-scale flow transport under gravitational field. Journal of Computational Physics, 332, 475–491 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. XIAO, T., XU, K., and CAI, Q. A velocity-space adaptive unified gas kinetic scheme for continuum and rarefied flows. arXiv, arXiv: 1802.04972v1 (2018) https://arxiv.org/abs/1802.04972

    Google Scholar 

  11. BHATNAGAR, P. L., GROSS, E. P., and KROOK, M. A model for collision processes in gases, I, small amplitude processes in charged and neutral one-component systems. Physical Review, 94(3), 511–525 (1954)

    Article  MATH  Google Scholar 

  12. SHAKHOV, E. M. Generalization of the Krook kinetic relaxation equation. Fluid Dynamics, 3(5), 95–96 (1968)

    Article  MathSciNet  Google Scholar 

  13. ANDRIES, P., AOKI, K., and PERTHAME, B. A consistent BGK-type model for gas mixtures. Journal of Statistical Physics, 106(5), 993–1018 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. LIU, S. and LIANG, Y. Asymptotic-preserving Boltzmann model equations for binary gas mixture. Physical Review E, 93(2), 023102 (2016)

    Article  MathSciNet  Google Scholar 

  15. MORSE, T. F. Energy and momentum exchange between nonequipartition gases. Physics of Fluids, 6(10), 1420–1427 (1963)

    Article  MathSciNet  Google Scholar 

  16. MOUHOT, C. and PARESCHI, L. Fast algorithms for computing the Boltzmann collision oper-ator. Mathematics of Computation, 75(256), 1833–1852 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. WU, L., ZHANG, J., REESE, J. M., and ZHANG, Y. A fast spectral method for the Boltzmann equation for monatomic gas mixtures. Journal of Computational Physics, 298, 602–621 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. FILBET, F. and JIN, S. A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. Journal of Computational Physics, 229(20), 7625–7648 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. LIU, C., XU, K., SUN, Q., and CAI, Q. A unified gas-kinetic scheme for continuum and rarefied flows IV: full Boltzmann and model equations. Journal of Computational Physics, 314, 305–340 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. KOSUGE, S., AOKI, K., and TAKATA, S. Shock-wave structure for a binary gas mixture: finite-difference analysis of the Boltzmann equation for hard-sphere molecules. European Journal of Mechanics-B/Fluids, 20(1), 87–126 (2001)

    Article  MATH  Google Scholar 

  21. WANG, R. Unified Gas-Kinetic Scheme for the Study of Non-Equilibrium Flows, Ph. D. dissertation, Hong Kong University of Science and Technology (2015)

    Book  Google Scholar 

  22. XU, K. BGK-based scheme for multicomponent flow calculations. Journal of Computational Physics, 134(1), 122–133 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianbai Xiao.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11772281, 91530319, and 11521091) and the Hong Kong Research Grant Council (Nos. 16207715 and 16206617)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, T., Xu, K. & Cai, Q. A unified gas-kinetic scheme for multiscale and multicomponent flow transport. Appl. Math. Mech.-Engl. Ed. 40, 355–372 (2019). https://doi.org/10.1007/s10483-019-2446-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-019-2446-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation