Skip to main content

Gas-Kinetic Methods for Turbulent Flow

  • Conference paper
  • First Online:
From Kinetic Theory to Turbulence Modeling (INdAM 2021)

Part of the book series: Springer INdAM Series ((SINDAMS,volume 51))

  • 305 Accesses

Abstract

Gas-kinetic schemes are derived from the BGK-Boltzmann equation. These family of schemes for CFD are computationally more demanding than conventional upwind schemes but provide a number of advantages stemming precisely from the fact that they were not derived from the Navier–Stokes equations. We highlight three peculiarities: (i) the gas evolution is derived in space and time exactly, (ii) the viscous stress tensor is built from the collision operator and not through the diffusion operator, variations of the relaxation time are thus not simply applied linearly to the strain rate (and its moments) but input through the collision operator, (iii) the order of the Chapman–Enskog expansion is a “natural” way to further improve the physical consistence of the collision operator. In practice, gas-kinetic schemes are not only more suitable to resolve vortical structures but they also handle turbulent viscosity (or, better, a turbulent relaxation time) in a physically more relevant fashion. Whereas the first advantage is exploited mostly in approaches like Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES), where the ability to resolve turbulent structures is key, the latter provides some leverage to approaches like Reynolds-Averaged Navier–Stokes (RANS) or hybrid RANS-LES where unresolved turbulence is funnelled through the collision operator. The paper aims at reviewing these advantages in the light of the results obtained by the author and those published in the recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babinsky, H., Harvey, J.K.: Shock Wave-Boundary-Layer Interactions. Cambridge University Press, New York (2011)

    Book  MATH  Google Scholar 

  2. Bendiksen, O.O.: Review of unsteady transonic aerodynamics: theory and applications. Progr. Aerosp. Sci. 47(2), 135–167 (2011)

    Article  Google Scholar 

  3. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954)

    MATH  Google Scholar 

  4. Bookey, P., Wyckham, C., Smits, A.: Experimental investigations of Mach 3 shock-wave turbulent boundary layer interactions. AIAA Paper No. 2005-4899 (2005)

    Google Scholar 

  5. Cao, G., Pan, L., Xu, K.: Three dimensional high-order gas-kinetic scheme for supersonic isotropic turbulence i: criterion for direct numerical simulation. Comput. Fluids 192, 104273 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, G., Su, H., Xu, J., Xu, K.: Implicit high-order gas kinetic scheme for turbulence simulation. Aerosp. Sci. Technol. 92, 958–971 (2019)

    Article  Google Scholar 

  7. Cao, G., Pan, L., Xu, K.: Three dimensional high-order gas-kinetic scheme for supersonic isotropic turbulence II: Coarse-graining analysis of compressible Ksgs budget. J. Comput. Phys. 439, 110402 (2021)

    Article  MATH  Google Scholar 

  8. Cao, G., Pan, L., Xu, K., Wan, M., Chen, S.: Non-equilibrium time-relaxation kinetic model for compressible turbulence modeling (2021). Preprint arXiv:2112.08873

    Google Scholar 

  9. Cao, G., Pan, L., Xu, K.: High-order gas-kinetic scheme with parallel computation for direct numerical simulation of turbulent flows. J. Comput. Phys. 448, 110739 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, New York (1988)

    Book  MATH  Google Scholar 

  11. Chen, H., Kandasamy, S., Orszag, S., Shock, R., Succi, S., Yakhot, V.: Extended Boltzmann kinetic equation for turbulent flows. Science 301(5633), 633–636 (2003)

    Article  Google Scholar 

  12. Chen, H., Orszag, S.A., Staroselsky, I., Succi, S.: Expanded analogy between Boltzmann kinetic theory of fluids and turbulence. J. Fluid Mech. 519(1), 301–314 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chou, S.Y., Baganoff, D.: Kinetic flux–vector splitting for the Navier–Stokes equations. J. Comput. Phys. 130(2), 217–230 (1997)

    Article  MATH  Google Scholar 

  14. Cook, P.H., McDonald, M.A., Firman, M.C.P.: Aerofoil RAE 2822–pressure distributions, and boundary layer and wake measurements. Experimental data base for computer program assessment. AGARD Advisory (1979)

    Google Scholar 

  15. Délery, J.: Experimental investigation of turbulence properties in transonic shock/boundary-layer interactions. AIAA J. 21, 180–185 (1983)

    Article  Google Scholar 

  16. Dolling, D.S., Erengil, M.E.: Unsteady wave structure near separation in a Mach 5 compression rampinteraction. AIAA J. 29(5), 728–735 (1991)

    Article  Google Scholar 

  17. Dupont, P., Haddad, C., Debiève, J.F.: Space and time organization in a shock-induced separated boundary layer. J. Fluid Mech. 559, 255–278 (2006)

    Article  MATH  Google Scholar 

  18. Edwards, J.R.: Numerical simulations of shock/boundary layer interactions using time-dependent modeling techniques: a survey of recent results. Progr. Aerosp. Sci. 44(6), 447–465 (2008)

    Article  Google Scholar 

  19. Guo, Z., Xu, K.: Progress of discrete unified gas-kinetic scheme for multiscale flows. Adv. Aerodyn. 3(1), 1–42 (2021)

    Article  MathSciNet  Google Scholar 

  20. Harris, C.D.: Two-dimensional aerodynamic characteristics of the NACA 0012 airfoil in the Langley 8 foot transonic pressure tunnel. NASA Technical Memorandum 81-927 (1981)

    Google Scholar 

  21. Heeg, J., Chwalowski, P.: Investigation of the transonic flutter boundary of the benchmark supercritical wing. In: 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech Forum. American Institute of Aeronautics and Astronautics, AIAA–2017–0191, 9–13 January 2017 (2017)

    Google Scholar 

  22. Li, Q., Fu, S., Xu, K.: Application of gas-kinetic scheme with kinetic boundary conditions in hypersonic flow. AIAA J. 43(10), 2170–2176 (2005)

    Article  Google Scholar 

  23. Li, Q., Xu, K., Fu, S.: A high-order gas-kinetic Navier–Stokes flow solver. J. Comput. Phys. 229(19), 6715–6731 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, H., Cao, G., Chen, W., Agarwal, R.K., Zhao, W.: Gas-kinetic scheme coupled with turbulent kinetic energy equation for computing hypersonic turbulent and transitional flows. Int. J. Comput. Fluid Dyn. 35(5), 319–330 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, H., Agarwal, R.K., Chen, W.: Computation of hypersonic turbulent and transitional flows using an extended gas kinetic scheme. In: AIAA SCITECH 2022 Forum, p. 1050 (2022)

    Google Scholar 

  26. Mandal, J.C., Deshpande, S.M.: Kinetic flux vector splitting for Euler equations. Comput. Fluids 23(2), 447–478 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. May, G., Srinivasan, B., Jameson, A.: An improved gas-kinetic BGK finite-volume method for three-dimensional transonic flow. J. Comput. Phys. 220(2), 856–878 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. McConkey, R., Yee, E., Lien, F.-S.: A curated dataset for data-driven turbulence modelling. Sci. Data 8(1), 1–14 (2021)

    Article  Google Scholar 

  29. Menter, F.R.: Improved two-equation k-omega turbulence models for aerodynamic flows. NASA STI/Recon Technical Report N 93, 22809 (1992)

    Google Scholar 

  30. Menter, F.R., Langtry, R.B., Likki, S.R., Suzen, Y.B., Huang, P.G., Völker, S.: A correlation-based transition model using local variables–part i: model formulation. J. Turbomach. 128, 413–422 (2006)

    Article  Google Scholar 

  31. Mishra, A.A., Mukhopadhaya, J., Iaccarino, G., Alonso, J.: Uncertainty estimation module for turbulence model predictions in su2. AIAA J. 57(3), 1066–1077 (2019)

    Article  Google Scholar 

  32. Ohwada, T., Xu, K.: The kinetic scheme for the full-Burnett equations. J. Comput. Phys. 201(1), 315–332 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pan, L., Cao, G., Xu, K.: Fourth-order gas-kinetic scheme for turbulence simulation with multi-dimensional WENO reconstruction. Comput. Fluids 221, 104927 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Righi, M.: A Gas-Kinetic Scheme for Turbulent Flow. AIAA Paper No. 2014-3330 (2014)

    Google Scholar 

  35. Righi, M.: A modified gas-kinetic scheme for turbulent flow. Commun. Comput. Phys. 16(1), 239–263 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Righi, M.: A Numerical Scheme for Hypersonic Turbulent Flow . AIAA Paper No. AIAA 2015-3341 (2015)

    Google Scholar 

  37. Righi, M.: A gas-kinetic scheme for turbulent flow. Flow Turbulence Combust. 97(1), 121–139 (2016)

    Article  Google Scholar 

  38. Righi, M.: Turbulence Modelling in Aeroelastic Problems. ERCOFTAC ETMM11 (2016)

    Google Scholar 

  39. Righi, M., Wang, R.: A gas-kinetic scheme for the simulation of turbulent flows. In: Fan, J. (ed.) Proceeding of the 29th International Symposium on Rarefied Gas Dynamics, Xi’an, pp. 1363–1370. American Institute of Physics, College Park (2014)

    Google Scholar 

  40. Rubinstein, R., Barton, J.M.: Nonlinear Reynolds stress models and the renormalization group. Phys. Fluids A Fluid Dyn. (1989–1993) 2(8), 1472–1476 (1990)

    Google Scholar 

  41. Settles, G.S., Fitzpatrick, T.J., Bogdonoff, S.M.: Detailed study of attached and separated compression corner flowfields in high Reynolds number supersonic flow. AIAA J. 17(6), 579–585 (1979)

    Article  Google Scholar 

  42. Spalart, P., Allmaras, S.: A one-equation turbulence model for aerodynamic flows. 30th Aerospace Sciences Meeting and Exhibit (1992). https://arc.aiaa.org/doi/abs/10.2514/6.1992-439

  43. Taghizadeh, S., Witherden, F.D., Girimaji, S.S.: Turbulence closure modeling with data-driven techniques: physical compatibility and consistency considerations. New J. Phys. 22(9), 093023 (2020)

    Article  Google Scholar 

  44. Tan, S., Li, Q., Xiao, Z., Fu, S.: Gas kinetic scheme for turbulence simulation. Aerosp. Sci. Technol. 78, 214–227 (2018)

    Article  Google Scholar 

  45. Wilcox, D.C.: Turbulence Modeling for CFD, 3rd edn. DCW Industries, La Canada (2006)

    Google Scholar 

  46. Wilcox, D.C.: Formulation of the kw turbulence model revisited. AIAA J. 46(11), 2823–2838 (2008)

    Article  Google Scholar 

  47. Xiao, H., Cinnella, P.: Quantification of model uncertainty in rans simulations: a review. Progr. Aerosp. Sci. 108, 1–31 (2019)

    Article  Google Scholar 

  48. Xu, K.: Gas-kinetic schemes for unsteady compressible flow simulations. In: VKI, Computational Fluid Dynamics, Annual Lecture Series, 29th, Rhode-Saint-Genese, Belgium (1998)

    Google Scholar 

  49. Xu, K.: A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with artificial dissipation and Godunov method. J. Comput. Phys. 171(1), 289–335 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  50. Xu, K.: A Unified Computational Fluid Dynamics Framework from Rarefied to Continuum Regimes. Cambridge University Press, Cambridge (2021)

    Book  MATH  Google Scholar 

  51. Xu, K., Prendergast, K.H.: Numerical Navier-Stokes solutions from gas kinetic theory. J. Comput. Phys. 114(1), 9–17 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  52. Xu, K., Mao, M., Tang, L.: A multidimensional gas-kinetic BGK scheme for hypersonic viscous flow. J. Comput. Phys. 203(2), 405–421 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  53. Xu, K., He, X., Cai, C.: Multiple temperature kinetic model and gas-kinetic method for hypersonic non-equilibrium flow computations. J. Comput. Phys. 227(14), 6779–6794 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  54. Xuan, L., Xu, K.: A new gas-kinetic scheme based on analytical solutions of the BGK equation. J. Comput. Phys. 234, 524–539 (2013). https://doi.org/10.1016/j.jcp.2012.10.007

    Article  MathSciNet  MATH  Google Scholar 

  55. Yang, X., Shyy, W., Xu, K.: Unified gas-kinetic wave-particle method for gas-particle two phase flow from dilute to dense solid-particle limit (2021). Preprint arXiv:2112.01829

    Google Scholar 

  56. Yang, X., Ji, X., Shyy, W., Xu, K.: Comparison of the performance of high-order schemes based on the gas-kinetic and HLLC fluxes. J. Comput. Phys. 448, 110706 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhao, W., Wang, J., Cao, G., Xu, K.: High-order gas-kinetic scheme for large eddy simulation of turbulent channel flows. Phys. Fluids 33(12), 125102 (2021)

    Article  Google Scholar 

  58. Zhao, F., Ji, X., Shyy, W., Xu, K.: A compact high-order gas-kinetic scheme on unstructured mesh for acoustic and shock wave computations. J. Comput. Phys. 449, 110812 (2022)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Righi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Righi, M. (2023). Gas-Kinetic Methods for Turbulent Flow. In: Barbante, P., Belgiorno, F.D., Lorenzani, S., Valdettaro, L. (eds) From Kinetic Theory to Turbulence Modeling. INdAM 2021. Springer INdAM Series, vol 51. Springer, Singapore. https://doi.org/10.1007/978-981-19-6462-6_18

Download citation

Publish with us

Policies and ethics