Skip to main content
Log in

Boundary-layer non-Newtonian flow over vertical plate in porous medium saturated with nanofluid

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The free convective heat transfer to the power-law non-Newtonian flow from a vertical plate in a porous medium saturated with nanofluid under laminar conditions is investigated. It is considered that the non-Newtonian nanofluid obeys the mathematical model of power-law. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The partial differential system governing the problem is transformed into an ordinary system via a usual similarity transformation. The numerical solutions of the resulting ordinary system are obtained. These solutions depend on the power-law index n, Lewis number Le, buoyancy-ratio number N r, Brownian motion number N b, and thermophoresis number N t. For various values of n and Le, the effects of the influence parameters on the fluid behavior as well as the reduced Nusselt number are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D B :

Brownian diffusion coefficient

D T :

thermophoretic diffusion coefficient

f :

rescaled nanoparticle volume fraction

g :

gravitational acceleration

k m :

effective thermal conductivity

K :

permeability of the porous medium

Le :

Lewis number

n :

power index of non-Newtonian fluid, n ⩾ 0

N r :

buoyancy ratio

N b :

Brownian parameter

N t :

thermophoresis parameter

Nu :

Nusselt number

Nu r :

reduced Nusselt number, \(Nu/Ra_x^{\tfrac{1} {2}} \)

q w :

wall heat flux

Ra x :

modified Rayleigh number

s :

dimensionless stream function

T :

temperature

T w :

temperature at the vertical plate

T :

ambient temperature attained as y → ∞

u, υ :

Darcian velocity components in x- and y-directions

x, y :

Cartesian coordinates

α m :

thermal diffusivity

β :

volumetric expansion coefficient of the non-Newtonian fluid

ɛ :

porosity

η :

similarity variable

θ :

dimensionless temperature

μ :

effective viscosity of non-Newtonian fluid

ρ f :

density of the non-Newtonian fluid

ρ p :

nanoparticles mass density

(ρc)f :

heat capacity of the fluid

(ρc)m :

effective heat capacity of the porous medium

(ρc)p :

effective heat capacity of the nanoparticles material

τ :

parameter defined by Eq. (6)

ϕ :

nanoparticles volume fraction

ϕ w :

nanoparticles volume fraction at the vertical plate

ϕ :

ambient nanoparticles volume fraction attained as y → ∞

ψ :

stream function

References

  1. Lee, S., Choi, S. U. S., Li, S., and Eastman, J. A. Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121, 280–289 (1999)

    Article  Google Scholar 

  2. Xuan, Y. and Li, Q. Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow, 21, 58–64 (2000)

    Article  Google Scholar 

  3. Xuan, Y. and Roetzel, W. Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass Transfer, 43, 3701–3707 (2000)

    Article  MATH  Google Scholar 

  4. Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., and Thompson, L. J. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett., 78, 718–720 (2001)

    Article  Google Scholar 

  5. Xie, H., Wang, J., Xi, T. G., Liu, Y., and Ai, F. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J. Appl. Phys., 91, 4568–4572 (2002)

    Article  Google Scholar 

  6. Wang, B. X., Zhou, L. P., and Peng, X. F. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int. J. Heat Mass Transfer, 46, 2665–2672 (2003)

    Article  MATH  Google Scholar 

  7. Wen, D. S. and Ding, Y. L. Effective thermal conductivity of aqueous suspensions of carbon nanotubes. Journal of Thermophysics Heat Transfer, 18, 481–485 (2004)

    Article  Google Scholar 

  8. Hong, T. K., Yang, H. S., and Choi, C. J. Study of the enhanced thermal conductivity of Fe nanofluids. J. Appl. Phys., 97, 1–4 (2005)

    Article  Google Scholar 

  9. Daungthongsuk, W. and Wongwises, S. A critical review of convective heat transfer of nanofluids. Renewable Sustainable Energy Reviews, 11, 797–817 (2007)

    Article  Google Scholar 

  10. Zhou, D. W. Heat transfer enhancement of copper nanofluid with acoustic cavitation. Int. J. Heat Mass Transfer, 47, 3109–3117 (2004)

    Article  Google Scholar 

  11. Choi, S. Enhancing thermal conductivity of fluids with nanoparticle. Developments and Applications of Non-Newtonian Flows (eds. Siyiner, D. A. and Wang, H. P.), San Francisco, United States, 66, 99–105 (1995)

  12. Xuan, Y. and Li, Q. Investigation on convective heat transfer and flow features of nanofluids. Journal of Heat Transfer, 125, 151–155 (2003)

    Article  Google Scholar 

  13. Buongiorno, J. Convective transport in nanofluids. ASME J. Heat Transfer, 128, 240–250 (2006)

    Article  Google Scholar 

  14. Wang, X. Q. and Mujumdar, A. S. Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci., 46, 1–19 (2007)

    Article  MATH  Google Scholar 

  15. Hady, F. M., Mohamed, R. A., and Mahdy, A. Non-Darcy natural convection flow along a vertical wavy plate embedded in a non-Newtonian fluid saturated porous medium. Int. J. Appl. Mech. Eng., 13, 91–100 (2008)

    Google Scholar 

  16. Hady, F. M. and Ibrahim, F. S. Forced convection heat transfer on a flat plate embedded in porous media for power-law fluids. Trans. Porous Media, 28, 125–134 (1997)

    Article  Google Scholar 

  17. Mahdy, A. and Hady, F. M. Effect of thermophoretic particle deposition in non-Newtonian free convection flow over a vertical plate with magnetic field effect. J. Non-Newtonian Fluid Mech., 161, 37–41 (2009)

    Article  MATH  Google Scholar 

  18. Cheng, P. and Minkowycz, W. J. Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike. Journal of Geophysical Research, 82, 2040–2044 (1977)

    Article  Google Scholar 

  19. Cheng, P. and Chang, I. D. Buoyancy induced flows in a saturated porous medium adjacent to impermeable horizontal surfaces. Int. J. Heat Mass Transfer, 19, 1267–1272 (1976)

    Article  MATH  Google Scholar 

  20. Lesnic, D., Ingham, D. B., and Pop, I. Free convection boundary layer flow along a vertical surface in a porous medium with Newtonian heating. Int. J. Heat Mass Transfer, 42, 2621–2627 (1999)

    Article  MATH  Google Scholar 

  21. Lesnic, D., Ingham, D. B., and Pop, I. Free convection from a horizontal surface in a porous medium with Newtonian heating. Trans. Porous Media, 3, 227–235 (2000)

    MATH  Google Scholar 

  22. Rastogi, S. K. and Poulikakos, D. Double-diffusion from a vertical surface in a porous region saturated with a non-Newtonian fluid. Int. J. Heat Mass Transfer, 38, 935–946 (1995)

    Article  MATH  Google Scholar 

  23. Nield, D. A. and Kuznetsov, A. V. Thermal instability in a porous medium layer saturated by a nanofluid. Int. J. Heat Mass Transfer, 52, 5796–5801 (2009)

    Article  MATH  Google Scholar 

  24. Nield, D. A. and Kuznetsov, A. V. Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman model. Trans. Porous Media, 81, 409–422 (2010)

    Article  MathSciNet  Google Scholar 

  25. Nield, D. A. and Kuznetsov, A. V. The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transfer, 52, 5792–5795 (2009)

    Article  MATH  Google Scholar 

  26. Hamad, M. A. A. and Bashir, M. A. Boundary-layer flow and heat transfer of a power law non-Newtonian over a vertical stretching sheet. World Appl. Sci. J., 7, 172–178 (2009)

    Google Scholar 

  27. Khan, W. A. and Pop, I. Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transfer, 53, 2477–2483 (2010)

    Article  MATH  Google Scholar 

  28. Hamad, M. A. A., Pop, I., and Ismail, A. I. M. Local similarity solutions for the free convective boundary-layer flow over a vertical semi-infinite cylinder embedded in a porous medium saturated with a nanofluid. Australian J. Basic Appl. Sci., 5, 147–156 (2011)

    Google Scholar 

  29. Hojjat, M., Etemad, S. G., and Bagheri, R. Laminar heat transfer of non-Newtonian nanofluids in a circular tube. Korean J. Chem. Eng., 27(5), 1391–1396 (2010)

    Article  Google Scholar 

  30. Hojjat, M., Etemad, S. G., Bagheri, R., and Thibault, J. Laminar convective heat transfer of non-Newtonian nanofluids with constant wall temperature. Heat Mass Transfer, 47, 203–209 (2011)

    Article  Google Scholar 

  31. Hojjat, M., Etemad, S. G., Bagheri, R., and Thibault, J. Rheological characteristics of non-Newtonian nanofluids: experimental investigation. Int. Commun. Heat Mass Transfer, 38, 144–148 (2011)

    Article  Google Scholar 

  32. Hojjat, M., Etemad, S. G., Bagheri, R., and Thibault, J. Convective heat transfer of non-Newtonian nanofluids through a uniformly heated circular tube. Int. J. Therm. Sci., 50, 525–531 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Eid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hady, F.M., Ibrahim, F.S., Abdel-Gaied, S.M. et al. Boundary-layer non-Newtonian flow over vertical plate in porous medium saturated with nanofluid. Appl. Math. Mech.-Engl. Ed. 32, 1577–1586 (2011). https://doi.org/10.1007/s10483-011-1524-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-011-1524-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation