Skip to main content
Log in

Laminar heat transfer of non-Newtonian nanofluids in a circular tube

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Forced convection heat transfer behavior of three different types of nanofluids flowing through a uniformly heated horizontal tube under laminar regime has been investigated experimentally. Nanofluids were made by dispersion of γ-Al2O3, CuO, and TiO2 nanoparticles in an aqueous solution of carboxymethyl cellulose (CMC). All nanofluids as well as the base fluid exhibit shear-thinning behavior. Results of heat transfer experiments indicate that both average and the local heat transfer coefficients of nanofluids are larger than that of the base fluid. The enhancement of heat transfer coefficient increases by increasing nanoparticle loading. At a given Peclet number and nanoparticle concentration the local heat transfer coefficient decreases by axial distance from the test section inlet. It seems that the thermal entry length of nanofluids is greater than the base fluid and becomes longer as nanoparticle concentration increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Maxwell, Electricity and magnetism, Clarendon Press, Oxford, U.K. (1873).

    Google Scholar 

  2. S. U. S. Choi, in American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, 231, 99 (1995).

    CAS  Google Scholar 

  3. L. Godson, B. Raja, D. Mohan Lal and S. Wongwises, Renew. Sustainable Energy Rev., 14(2), 629 (2009).

    Article  Google Scholar 

  4. W. Yu, D.M. France, J. L. Routbort and S.U. S. Choi, Heat Transf. Eng., 29(5), 432 (2008).

    Article  CAS  Google Scholar 

  5. Y. Li, J. Zhou, S. Tung, E. Schneider and S. Xi, Powder Technol., 196(2), 89 (2009).

    Article  CAS  Google Scholar 

  6. B. C. Pak and Y. I. Cho, Exp. Heat Transf., 11, 151 (1998).

    Article  CAS  Google Scholar 

  7. D. Wen and Y. Ding, Int. J. Heat Mass Transf., 47, 5181 (2004).

    Article  CAS  Google Scholar 

  8. S. Z. Heris, S.G. Etemad and M.N. Esfahany, Int. Commun. Heat Mass Transf., 33(4), 529 (2006).

    Article  Google Scholar 

  9. Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang and H. Lu, Int. J. Heat Mass Transf., 50(11–12), 2272 (2007).

    Article  CAS  Google Scholar 

  10. C. T. Nguyen, G. Roy, C. Gauthier and N. Galanis, App. Therm. Eng., 27(8–9), 1501 (2007).

    Article  CAS  Google Scholar 

  11. L. Syam Sundar, K.V. Sharma and S. Ramanathan, Int. J. Nanotech. Appl., 2, 21 (2007).

    Google Scholar 

  12. D. P. Kulkarni, P.K. Namburu, H. E. Bargar and D.K. Das, Heat Transf. Eng., 29(12), 1027 (2008).

    Article  CAS  Google Scholar 

  13. K. V. Sharma, L. S. Sundar and P. K. Sarma, Int. Commun. Heat Mass Transf., 36(5), 503 (2009).

    Article  CAS  Google Scholar 

  14. K.B. Anoop, T. Sundararajan and S.K. Das, Int. J. Heat Mass Transf., 52(9–10), 2189 (2009).

    Article  CAS  Google Scholar 

  15. U. Rea, T. McKrell, L.W. Hu and J. Buongiorno, Int. J. Heat Mass Transf., 52(7–8), 2042 (2009).

    Article  CAS  Google Scholar 

  16. K. S. Hwang, S. P. Jang and S. U. S. Choi, Int. J. Heat Mass Transf., 52(1–2), 193 (2009).

    Article  CAS  Google Scholar 

  17. I. Gherasim, G. Roy, C. T. Nguyen and D. Vo-Ngoc, Int. J. Therm. Sci., 48(8), 1486 (2009).

    Article  CAS  Google Scholar 

  18. B. Farajollahi, S. Gh. Etemad and M. Hojjat, Int. J. Heat Mass Transf., 53(1–3), 12.

  19. W.Y. Lai, S. Vinod, P. E. Phelan and P. Ravi, J. Heat Transf., 131(11), 112401 (2009).

    Article  Google Scholar 

  20. M. Chandrasekar, S. Suresh and A. Chandra Bose, Exp. Therm. Fluid Sci., 34(2), 122 (2010).

    Article  CAS  Google Scholar 

  21. B. H. Chun, H. U. Kang and S. H. Kim, Korean J. Chem. Eng., 25(5), 966 (2008).

    Article  CAS  Google Scholar 

  22. Y. Ding, H. Alias, D. Wen and R. A. Williams, Int. Commun. Heat Mass Transf., 49, 240 (2006).

    Article  CAS  Google Scholar 

  23. P. Garg, J. L. Alvarado, C. Marsh, T.A. Carlson, D.A. Kessler, and K. Annamalai, Int. J. Heat Mass Transf., 52(21–22), 5090 (2009).

    Article  CAS  Google Scholar 

  24. Y. Xuan and Q. Li, J. Heat Transf., 125(1), 151 (2003).

    Article  CAS  Google Scholar 

  25. Y. Yang, Z.G. Zhang, E.A. Grulke, W. B. Anderson and G. Wu, Int. J. Heat Mass Transf., 48(6), 1107 (2005).

    Article  CAS  Google Scholar 

  26. W. Yu, D. M. France, D. S. Smith, D. Singh, E.V. Timofeeva, and J. L. Routbort, Int. J. Heat Mass Transf., 52(15–16), 3606 (2009).

    Article  CAS  Google Scholar 

  27. S. Torii and W.-J. Yang, J. Heat Transf., 131, (2009).

  28. A. Sharma and S. Chakraborty, Int. J. Heat Mass Transf., 51(19–20), 4875 (2008).

    Article  CAS  Google Scholar 

  29. J.M. Laskar, J. Philip and B. Raj, Phys. Rev. E - Statistical, Nonlinear, and Soft Matter Physics, 78(3), (2008).

  30. X.-Q. Wang and A. S. Mujumdar, Int. J. Therm. Sci., 46, 1 (2007).

    Article  Google Scholar 

  31. X.-Q. Wang and A. S. Mujumdar, Brazilian J. Chem. Eng., 25(4), 631 (2008).

    Google Scholar 

  32. S. Kakaç and A. Pramuanjaroenkij, Int. J. Heat Mass Transf., 52(13–14), 3187 (2009).

    Article  Google Scholar 

  33. M. Chandrasekar, S. Suresh and A. Chandra Bose, Exp. Therm. Fluid Sci., 34(2), 210 (2010).

    Article  CAS  Google Scholar 

  34. F. P. Incropera and D. P. DEWitt, Fundamentals of heat and mass transfer, Fourth Ed., John Wiley & Sons, New York (1996).

    Google Scholar 

  35. M. Kutz, Heat transfer calculations, McGraw-Hill, New York, NY (2006).

    Google Scholar 

  36. M. Hojjat, S.Gh. Etemad, R. Bagheri and J. Thibault, in 8th World Congress of Chemical Engineering, Montreal, Canada (2009).

  37. M. Hojjat, S. Gh. Etemad, R. Bagheri and J. Thibault, in The 6th Int. Chemical Engineering Congress & Exhibition, Kish Island, Iran (2009).

  38. Y. Xuan and W. Roetzel, Int. J. Heat Mass Transf., 43(19), 3701 (2000).

    Article  CAS  Google Scholar 

  39. R.K. Shah, in 3rd National Heat and Mass Transf., Indian Institute of Technology, Bombay, India, 1, HTM (1975).

    Google Scholar 

  40. S. Z. Heris, M. N. Esfahany and G. Etemad, Numer. Heat Transf. Part A, 52(11), 1043 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Gholamreza Etemad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hojjat, M., Etemad, S.G. & Bagheri, R. Laminar heat transfer of non-Newtonian nanofluids in a circular tube. Korean J. Chem. Eng. 27, 1391–1396 (2010). https://doi.org/10.1007/s11814-010-0250-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0250-3

Key words

Navigation