Skip to main content
Log in

Changes to the rumen bacterial population of sheep with the addition of 2,4,6-trinitrotoluene to their diet

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Previous work has shown that bacterial isolates from the sheep rumen are capable of detoxifying 2,4,6-trinitrotoluene (TNT) into polar constituents. In this study, the dietary effects of TNT on the sheep rumen microbial community were evaluated using molecular microbiology ecology tools. Rumen samples were collected from sheep fed with and without TNT added to their diet, genomic DNA was extracted, and the 16S rRNA-V3 gene marker was used to quantify changes in the microbial population in the rumen. Control and treatment samples yielded 533 sequences. Phylogenetic analyses were performed to determine the microbial changes between the two conditions. Results indicated the predominant bacterial populations present in the rumen were comprised of the phyla Firmicutes and Bacteroidetes, irrespective of presence/absence of TNT in the diet. Significant differences (P < 0.001) were found between the community structure of the bacteria under TNT (−) and TNT (+) diets. Examination of the TNT (+) diet showed an increase in the clones belonging to family Ruminococcaceae, which have previously been shown to degrade TNT in pure culture experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

TNT:

2,4,6-Trinitrotoluene

EPA:

Environmental protection agency

DGGE:

Denaturant gradient gel electrophoresis

LGCGPB:

Low GC Gram-positive bacteria

OTUs:

Operational taxonomic units

References

  • An D, Dong X, Dong Z (2005) Prokaryote diversity in the rumen of yak (Bos grunniens) and Jinnan cattle (Bos taurus) estimated by 16S rDNA homology analyses. Anaerobe 11:207–215

    Article  CAS  PubMed  Google Scholar 

  • Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555

    Article  CAS  PubMed  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2010) GenBank. Nucleic Acids Res 38:D46–D51

    Article  CAS  PubMed  Google Scholar 

  • Borneman J, Triplett EW (1997) Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl Environ Microbiol 63:2647–2653

    CAS  PubMed  Google Scholar 

  • Bryant MP (1959) Bacterial Species of the rumen. Bacteriol Rev 23:125–153

    CAS  PubMed  Google Scholar 

  • Bryant C, DeLuca M (1991) Purification and characterization of an oxygen-insensitive NAD(P)H nitroreductase from Enterobacter cloacae. J Biol Chem 266:4119–4125

    CAS  PubMed  Google Scholar 

  • Claesson MJ, O’Sullivan O, Wang Q, Nikkila J, Marchesi JR, Smidt H, de Vos WM, Ross RP, O’Toole PW (2009) Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS One 4:e6669

    Article  PubMed  Google Scholar 

  • De Lorme M, Craig AM (2009) Biotransformation of 2,4,6-trinitrotoluene by pure culture ruminal bacteria. Curr Microbiol 58:81–86

    Article  CAS  PubMed  Google Scholar 

  • DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689

    Article  CAS  PubMed  Google Scholar 

  • Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG, Edrington TS (2008) Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol 8:125

    Article  PubMed  Google Scholar 

  • Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A (2007) Geneious v3.7 (www.geneious.com)

  • Edwards JE, McEwan NR, Travis AJ, John R (2004) 16S rDNA library-based analysis of ruminal bacterial diversity. Antonie Van Leeuwenhoek 86:263–281

    Article  CAS  Google Scholar 

  • Elbing K, Brent R (2002) Media preparation and bacteriological tools. Curr Protoc Mol Biol 59:1.1.1–1.1.7

    Google Scholar 

  • Engebrecht J, Brent R, Kaderbhai MA (2000) Alkaline lysis in 96 well microtiter dishes. Curr Protoc Mol Biol 15:1.6.2–1.6.3

    Google Scholar 

  • Esteve-Nunez A, Ramos JL (1998) Metabolism of 2,4,6-trinitrotoluene by Pseudomonas sp. JLR11. Environ Sci Technol 32:3802–3802

    Article  CAS  Google Scholar 

  • Esteve-Nunez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 65:335–352

    Article  CAS  PubMed  Google Scholar 

  • Fleischmann TJ, Walker KC, Spain JC, Hughes JB, Craig AM (2004) Anaerobic transformation of 2,4,6-TNT by bovine ruminal microbes. BBRC 314:957–963

    CAS  PubMed  Google Scholar 

  • Fuller ME, Manning JF (1997) Aerobic Gram-positive and Gram-negative bacteria exhibit differential sensitivity to and transformation of 2,4,6-Trinitrotoluene (TNT). Curr Microbiol 35:77–83

    Article  CAS  PubMed  Google Scholar 

  • Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000) Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54:605–618

    Article  CAS  PubMed  Google Scholar 

  • Homma-Takeda S, Hiraku Y, Ohkuma Y, Oikawa S, Murata M, Ogawa K, Iwamuro T, Li S, Sun GF, Kumagai Y, Shimojo N, Kawanishi S (2002) 2,4,6-trinitrotoluene-induced reproductive toxicity via oxidative DNA damage by its metabolite. Free Radic Res 36:555–566

    Article  CAS  PubMed  Google Scholar 

  • Janssen PH, Kirs M (2008) Structure of the archaeal community of the rumen. Appl Environ Microbiol 74:3619–3625

    Article  CAS  PubMed  Google Scholar 

  • Koike S, Pan J, Kobayashi Y, Tanaka K (2003) Kinetics of in sacco fiber-attachment of representative ruminal cellulolytic bacteria monitored by competitive PCR. J Dairy Sci 86:1429–1435

    Article  CAS  PubMed  Google Scholar 

  • Krause DO, Russell JB (1996) How many ruminal bacteria are there? J Dairy Sci 79:1467–1475

    Article  CAS  PubMed  Google Scholar 

  • Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651

    Article  CAS  PubMed  Google Scholar 

  • McCalla DR, Reuvers A, Kaiser C (1970) Mode of action of nitrofurazone. J Bacteriol 104:1126–1134

    CAS  PubMed  Google Scholar 

  • McCormick NG, Feeherry FE, Levinson HS (1976) Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Appl Environ Microbiol 31:949–958

    CAS  PubMed  Google Scholar 

  • Montpas S, Samson J, Langlois E, Lei J, Piche YRC (1997) Degradation of 2,4,6-trinitrotoluene by Serratia marcescens. Biotechnol Lett 19:291–294

    Article  CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  Google Scholar 

  • Nelson KE, Zinder SH, Hance I, burr P, Odongo D, Wasawo D, Odenyo A, Bishop R (2003) Phylogenetic analysis of the microbial populations in the wild herbivore gastorintestinal tract: insights into an unexplored niche. Environ Microbiol 5:1212–1220

    Article  PubMed  Google Scholar 

  • Nercessian O, Prokofeva M, Lebedinski A, L’Haridon S, Cary C, Prieur D, Jeanthon C (2004) Design of 16S rRNA-targeted oligonucleotide probes for detecting cultured and uncultured archaeal lineages in high-temperature environments. Environ Microbiol 6:170–182

    Article  CAS  PubMed  Google Scholar 

  • Nishino SF, Spain JC (2002) Biodegradation, transformation and bioremediation of nitroaromatic compounds. In: Hurst CJ, Crawford RL, Knudsen GR, McInerey MJ, Stetzenbach LD (eds) Manual of environmental microbiology, 2nd edn. ASM Press, Washington, pp 987–996

    Google Scholar 

  • Ochsenreiter T, Selezi D, Quaiser A, Bonch-Osmolovskaya L, Schleper C (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol 5:787–797

    Article  CAS  PubMed  Google Scholar 

  • Peterson FJ, Mason RP, Hovsepian J, Holtzman JL (1979) Oxygen-sensitive and -insensitive nitroreduction by Escherichia coli and rat hepatic microsomes. J Biol Chem 254:4009–4014

    CAS  PubMed  Google Scholar 

  • Rainey FA, Janssen PH (1995) Phylogenetic analysis by 16S ribosomal DNA sequence comparison reveals two unrelated groups of species within the genus Ruminococcus. FEMS Microbiol Lett 129:69–73

    CAS  PubMed  Google Scholar 

  • Ramos JL, Gonzalez-Perez MM, Caballero A, van Dillewijn P (2005) Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight. Curr Opin Biotechnol 16:275–281

    Article  CAS  PubMed  Google Scholar 

  • Rappe MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633

    Article  CAS  PubMed  Google Scholar 

  • Russell JB, Rychlik JL (2001) Factors that alter rumen microbial ecology. Science 292:1119–1122

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  Google Scholar 

  • Sliwinski MK, Goodman RM (2004) Spatial heterogeneity of crenarchaeal assemblages within mesophilic soil ecosystems as revealed by PCR-single-stranded conformation polymorphism profiling. Appl Environ Microbiol 70:1811–1820

    Article  CAS  PubMed  Google Scholar 

  • Smets BF, Yin H, Esteve-Nunez A (2007) TNT biotransformation: when chemistry confronts mineralization. Appl Microbiol Biotechnol 76:267–277

    Article  CAS  PubMed  Google Scholar 

  • Smith DJ, Craig AM, Duringer JM, Chaney RL (2008) Absorption, tissue distribution, and elimination of residues after 2,4,6-trinitro[14C]toluene administration to sheep. Environ Sci Technol 42:2563–2569

    Article  CAS  PubMed  Google Scholar 

  • Spain JC (1995) Biodegradation of nitroaromatic compounds. Annu Rev Microbiol 49:523–555

    Article  CAS  PubMed  Google Scholar 

  • Stahl JD, Aust SD (1993) Metabolism and detoxification of TNT by phanerochaete chrysosporium. BBRC 192:477–482

    CAS  PubMed  Google Scholar 

  • Stevenson DM, Weimer PJ (2007) Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol 75:165–174

    Article  CAS  PubMed  Google Scholar 

  • Tajima K, Nagamine T, Matsui H, Nakamura M, Aminov RI (2001) Phylogenetic analysis of archaeal 16S rRNA libraries from the rumen suggests the existence of a novel group of archaea not associated with known methanogens. FEMS Microbiol Lett 200:67–72

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  Google Scholar 

  • Whitford MF, Forster RJ, Beard CE, Gong J, Teather RM (1998) Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe 4:153–163

    Article  CAS  PubMed  Google Scholar 

  • Williams RE, Rathbone DA, Scrutton NS, Bruce NC (2004) Biotransformation of explosives by the old yellow enzyme family of flavoproteins. Appl Environ Microbiol 70:3566–3574

    Article  CAS  PubMed  Google Scholar 

  • Woese CR, Sogin ML, Bonen L, Stahl D (1975) Sequence studies on 16S ribosomal RNA from a blue-green alga. J Mol Evol 4:307–315

    Article  CAS  PubMed  Google Scholar 

  • Woese C, Sogin M, Stahl D, Lewis BJ, Bonen L (1976) A comparison of the 16S ribosomal RNAs from mesophilic and thermophilic bacilli: some modifications in the Sanger method for RNA sequencing. J Mol Evol 7:197–213

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Garcia-Gonzalez R, Schanbacher FL, Morrison M (2008) Evaluations of different hypervariable regions of archaeal 16S rRNA genes in profiling of methanogens by Archaea-specific PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol 74:889–893

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This material is based upon research supported jointly funded by the Oregon Agricultural Experiment Station project ORE00871 and by the U.S. Department of Agriculture, under agreement nos. 58-6227-8-044 and 58-1265-6-076. Any opinions, findings, conclusion, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture. The authors are indebted to D. J. Smith for obtaining the rumen samples used in the analysis. The authors would like to thank Ms. Zelda Zimmerman for editorial assistance and Katie Coleman for help with RDPII website analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Morrie Craig.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 141 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perumbakkam, S., Mitchell, E.A. & Morrie Craig, A. Changes to the rumen bacterial population of sheep with the addition of 2,4,6-trinitrotoluene to their diet. Antonie van Leeuwenhoek 99, 231–240 (2011). https://doi.org/10.1007/s10482-010-9481-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-010-9481-x

Keywords

Navigation