Skip to main content
Log in

Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Improved biofuels production requires a better understanding of industrial microorganisms. Some wild Saccharomyces cerevisiae strains, isolated from the fuel ethanol industry in Brazil, present exceptional fermentation performance, persistence and prevalence in the harsh industrial environment. Nevertheless, their physiology has not yet been systematically investigated. Here we present a first systematic evaluation of the widely used industrial strains PE-2, CAT-1, BG-1 and JP1, in terms of their tolerance towards process-related stressors. We also analyzed their growth physiology under heat stress. These strains were evaluated in parallel to laboratory and baker’s strains. Whereas the industrial strains performed in general better than the laboratory strains under ethanol or acetic acid stresses and on industrial media, high sugar stress was tolerated equally by all strains. Heat and low pH stresses clearly distinguished fuel ethanol strains from the others, indicating that these conditions might be the ones that mostly exert selective pressure on cells in the industrial environment. During shake-flask cultivations using a synthetic medium at 37 °C, industrial strains presented higher ethanol yields on glucose than the laboratory strains, indicating that they could have been selected for this trait—a response to energy-demanding fermentation conditions. These results might be useful to guide future improvements of large-scale fuel ethanol production via engineering of stress tolerance traits in other strains, and eventually also for promoting the use of these fuel ethanol strains in different industrial bioprocesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albers E, Larsson C (2009) A comparison of stress tolerance in YPD and industrial lignocellulose-based medium among industrial and laboratory yeast strains. J Ind Microbiol Biot 36(8):1085–1091. doi:10.1007/s10295-009-0592-1

    Article  CAS  Google Scholar 

  • Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Liden G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biot 82(4):340–349. doi:10.1002/Jctb.1676

    Article  CAS  Google Scholar 

  • Almeida JRM, Karhumaa K, Bengtsson O, Gorwa-Grauslund M-F (2009) Screening of Saccharomyces cerevisiae strains with respect to anaerobic growth in non-detoxified lignocellulose hydrolysate. Bioresour Technol 100(14):3674–3677. doi:10.1016/j.biortech.2009.02.057

    Article  PubMed  CAS  Google Scholar 

  • Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto OVC, Missawa SK, Galzerani F, Costa GGL, Vidal RO, Noronha MF, Dominska M, Andrietta MGS, Andrietta SR, Cunha AF, Gomes LH, Tavares FCA, Alcarde AR, Dietrich FS, McCusker JH, Petes TD, Pereira GAG (2009) Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res 19(12):2258–2270. doi:10.1101/gr.091777.109

    Article  PubMed  CAS  Google Scholar 

  • Attfield PV (1997) Stress tolerance: the key to effective strains of industrial baker’s yeast. Nat Biotechnol 15(13):1351–1357. doi:10.1038/nbt1297-1351

    Article  PubMed  CAS  Google Scholar 

  • Babrzadeh F, Jalili R, Wang C, Shokralla S, Pierce S, Robinson-Mosher A, Nyren P, Shafer R, Basso L, de Amorim H, de Oliveira A, Davis R, Ronaghi M, Gharizadeh B, Stambuk B (2012) Whole-genome sequencing of the efficient industrial fuel-ethanol fermentative Saccharomyces cerevisiae strain CAT-1. Mol Genet Genome 287(6):485–494. doi:10.1007/s00438-012-0695-7

    Article  CAS  Google Scholar 

  • Basso LC, Amorim HV, Oliveira AJ, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8(7):1155–1163. doi:10.1111/j.1567-1364.2008.00428.x

    Article  PubMed  CAS  Google Scholar 

  • Basso LC, Basso TO, Rocha SN (2011) Ethanol production in Brazil: The industrial process and its impact on yeast fermentation. In: Bernardes MAS (ed) Biofuel production. InTech, Rijeka, pp 85–100

    Google Scholar 

  • Belloch C, Orlic S, Barrio E, Querol A (2008) Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex. Int J Food Microbiol 122(1–2):188–195. doi:10.1016/j.ijfoodmicro.2007.11.083

    Article  PubMed  CAS  Google Scholar 

  • Blomberg A (1997) The osmotic hypersensitivity of the yeast Saccharomyces cerevisiae is strain and growth media dependent: quantitative aspects of the phenomenon. Yeast 13(6):529–539. doi:10.1002/(SICI)1097-0061(199705)13:6<529::AIDYEA103>3.0.CO;2-H

    Google Scholar 

  • Borneman AR, Desany BA, Riches D, Affourtit JP, Forgan AH, Pretorius IS, Egholm M, Chambers PJ (2011) Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genet 7(2):e1001287. doi:10.1371%2Fjournal.pgen.1001287

    Article  PubMed  CAS  Google Scholar 

  • Bravim F, Palhano F, Fernandes A, Fernandes P (2010) Biotechnological properties of distillery and laboratory yeasts in response to industrial stresses. J Ind Microbiol Biotechnol 37(10):1071–1079. doi:10.1007/s10295-010-0755-0

    Article  PubMed  CAS  Google Scholar 

  • Buckeridge MS, De Souza AP, Arundale RA, Anderson-Teixeira KJ, DeLucia E (2012) Ethanol from sugarcane in Brazil: a ‘midway’ strategy for increasing ethanol production while maximizing environmental benefits. GCB Bioenergy 4(2):119–126. doi:10.1111/j.1757-1707.2011.01122.x

    Article  CAS  Google Scholar 

  • Carrasco P, Querol A, del Olmo M (2001) Analysis of the stress resistance of commercial wine yeast strains. Arch Microbiol 175(6):450–457. doi:10.1007/s002030100289

    Article  PubMed  CAS  Google Scholar 

  • Ciesarová Z, Smogrovicová D, Dömény Z (1996) Enhancement of yeast ethanol tolerance by calcium and magnesium. Folia Microbiol (Praha) 41(6):485–488

    Article  Google Scholar 

  • da Silva-Filho EA, de Melo WF, Antunes DF, dos Santos SKB, Resende AD, Simoes DA, De Morais MA Jr (2005) Isolation by genetic and physiological characteristics of a fuel-ethanol fermentative Saccharomyces cerevisiae strain with potential for genetic manipulation. J Ind Microbiol Biotechnol 32(10):481–486. doi:10.1007/s10295-005-0027-6

    Article  PubMed  Google Scholar 

  • Daran-Lapujade P, Daran JM, Luttik MAH, Almering MJH, Pronk JT, Kotter P (2009) An atypical PMR2 locus is responsible for hypersensitivity to sodium and lithium cations in the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D. FEMS Yeast Res 9(5):789–792. doi:10.1111/j.1567-1364.2009.00530.x

    Article  PubMed  CAS  Google Scholar 

  • de Amorim-Neto HB, Yohannan BK, Bringhurst TA, Brosnan JM, Pearson SY, Walker JW, Walker GM (2009) Evaluation of a Brazilian fuel alcohol yeast strain for scotch whisky fermentations. J Inst Brew 115(3):198–207

    Google Scholar 

  • de Melo HF, Bonini BM, Thevelein J, Simões DA, Morais MA (2010) Physiological and molecular analysis of the stress response of Saccharomyces cerevisiae imposed by strong inorganic acid with implication to industrial fermentations. J Appl Microbiol 109(1):116–127. doi:10.1111/j.1365-2672.2009.04633.x

    PubMed  Google Scholar 

  • Della-Bianca BE, Basso TO, Stambuk BU, Basso LC, Gombert AK (2013) What do we know about the yeast strains from the Brazilian fuel ethanol industry? Appl Microbiol Biotechnol 97(3):979–991. doi:10.1007/s00253-012-4631-x

    Article  PubMed  CAS  Google Scholar 

  • Dickinson JR, Schweizer M (2004) The metabolism and molecular physiology of Saccharomyces cerevisiae, 2nd edn. Taylor & Francis, London

    Google Scholar 

  • Dorta C, de Oliva-Neto P, de Abreu-Neto MS, Nicolau-Junior N, Nagashima AI (2006) Synergism among lactic acid, sulfite, pH and ethanol in alcoholic fermentation of Saccharomyces cerevisiae (PE-2 and M-26). World J Microbiol Biotechnol 22(2):177–182. doi:10.1007/s11274-005-9016-1

    Article  CAS  Google Scholar 

  • Dunn B, Richter C, Kvitek DJ, Pugh T, Sherlock G (2012) Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments. Genome Res 22(5):908–924. doi:10.1101/gr.130310.111

    Article  PubMed  CAS  Google Scholar 

  • Elsztein C, de Lucena RM, de Morais MA Jr (2011) The resistance of the yeast Saccharomyces cerevisiae to the biocide polyhexamethylene biguanide: involvement of cell wall integrity pathway and emerging role for YAP1. BMC Mol Biol 12:38. doi:10.1186/1471-2199-12-38

    Article  PubMed  CAS  Google Scholar 

  • Garay-Arroyo A, Covarrubias AA, Clark I, Nino I, Gosset G, Martinez A (2004) Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 63(6):734–741. doi:10.1007/s00253-003-1414-4

    Article  PubMed  CAS  Google Scholar 

  • Gomar-Alba M, Jiménez-Martí E, del Olmo M (2012) The Saccharomyces cerevisiae Hot1p regulated gene YHR087W (HGI1) has a role in translation upon high glucose concentration stress. BMC Mol Biol 21(13):19. doi:10.1186/1471-2199-13-19

    Article  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66(2):300–372. doi:10.1128/mmbr.66.2.300-372.2002

    Article  PubMed  CAS  Google Scholar 

  • Ivorra C, Pérez-Ortín JE, del Olmo Ml (1999) An inverse correlation between stress resistance and stuck fermentations in wine yeasts: a molecular study. Biotechnol Bioeng 64(6):698–708. doi:10.1002/(SICI)1097-0290(19990920)64:6<698::AID-BIT9>3.0.CO;2-Z

  • Jiménez-Martí E, Zuzuarregui A, Gomar-Alba M, Gutiérrez D, Gil C, Del Olmo M (2011) Molecular response of Saccharomyces cerevisiae wine and laboratory strains to high sugar stress conditions. Int J Food Microbiol 145(1):211–220. doi:10.1016/j.ijfoodmicro.2010.12.023

    Article  PubMed  Google Scholar 

  • Landolfo S, Politi H, Angelozzi D, Mannazzu I (2008) ROS accumulation and oxidative damage to cell structures in Saccharomyces cerevisiae wine strains during fermentation of high-sugar-containing medium. Biochim Biophys Acta 1780(6):892–898. doi:10.1016/j.bbagen.2008.03.008

    Article  PubMed  CAS  Google Scholar 

  • Lewis JG, Learmonth RP, Attfield PV, Watson K (1997) Stress co-tolerance and trehalose content in baking strains of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 18(1):30–36

    Article  PubMed  CAS  Google Scholar 

  • Llanos R, Fernández-Espinar MT, Querol A (2006) A comparison of clinical and food Saccharomyces cerevisiae isolates on the basis of potential virulence factors. Antonie Van Leeuwenhoek J Microb 90(3):221–231. doi:10.1007/s10482-006-9077-7

    Article  CAS  Google Scholar 

  • Locher G, Hahnemann U, Sonnleitner B, Fiechter A (1993) Automatic bioprocess control. 4. A prototype batch of Saccharomyces cerevisiae. J Biotechnol 29(1–2):57–74. doi:10.1016/0168-1656(93)90040-T

    Article  PubMed  CAS  Google Scholar 

  • Luttik MAH, Kötter P, Salomons FA, van der Klei IJ, van Dijken JP, Pronk JT (2000) The Saccharomyces cerevisiae ICL2 gene encodes a mitochondrial 2-methylisocitrate lyase involved in propionyl-coenzyme A metabolism. J Bacteriol 182(24):7007–7013. doi:10.1128/jb.182.24.7007-7013.2000

    Article  PubMed  CAS  Google Scholar 

  • Macedo IC (2007) Situação atual e perspectivas do etanol. Estud Av 21(59):157–165. doi:10.1590/S0103-40142007000100012

    Article  Google Scholar 

  • Massera A, Assof M, Sturm ME, Sari S, Jofré V, Cordero-Otero R, Combina M (2012) Selection of indigenous Saccharomyces cerevisiae strains to ferment red musts at low temperature. Ann Microbiol 62(1):367–380. doi:10.1007/s13213-011-0271-0

    Article  Google Scholar 

  • Mensonides FIC, Schuurmans JM, de Mattos MJT, Hellingwerf KJ, Brul S (2002) The metabolic response of Saccharomyces cerevisiae to continuous heat stress. Mol Biol Rep 29(1):103–106. doi:10.1023/A:1020392805411

    Article  PubMed  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428. doi:10.1021/ac60147a030

    Article  CAS  Google Scholar 

  • Mortimer RK, Johnston JR (1986) Genealogy of principal strains of the Yeast Genetic Stock Center. Genetics 113(1):35–43

    PubMed  CAS  Google Scholar 

  • Netto LES (2006) A rapid screen for determination of the protective role of antioxidant proteins in yeast. In: Harris JR, Graham J, Rickwood D (eds) Cell biology protocols, vol 6. John Wiley & Sons Ltd, Chichester, pp 255–258

    Google Scholar 

  • Nielsen J, Villadsen J, Lidén G (2003) Bioreaction engineering principles, 2nd edn. Kluwer/Plenum, New York

    Book  Google Scholar 

  • Olsson L, Nielsen J (1997) On-line and in situ monitoring of biomass in submerged cultivations. Trends Biotechnol 15(12):517–522. doi:10.1016/S0167-7799(97)01136-0

    Article  CAS  Google Scholar 

  • Ough CS, Fong D, Amerine MA (1972) Glycerol in wine: determination and some factors affecting. Am J Enol Vitic 23(1):1–5

    Google Scholar 

  • Páez J, Córdova E, Soto Ó, Barrio E, Belloch C, Rutiaga-Quiñones OM (2011) Saccharomyces cerevisiae strains with robust responses to fermentation stresses isolated from the alcoholic fermentation of Agave duranguensis musts. Afr J Microbiol Res 5(8):865–871

    Google Scholar 

  • Park H, Hwang Y-S (2008) Genome-wide transcriptional responses to sulfite in Saccharomyces cerevisiae. J Microbiol 46(5):542–548. doi:10.1007/s12275-008-0053-y

    Article  PubMed  CAS  Google Scholar 

  • Pereira FB, Guimarães PMR, Teixeira JA, Domingues L (2011) Robust industrial Saccharomyces cerevisiae strains for very high gravity bio-ethanol fermentations. J Biosci Bioeng 112(2):130–136. doi:10.1016/j.jbiosc.2011.03.022

    Article  PubMed  CAS  Google Scholar 

  • Posas F, Chambers JR, Heyman JA, Hoeffler JP, de Nadal E, Arino J (2000) The transcriptional response of yeast to saline stress. J Biol Chem 275(23):17249–17255. doi:10.1074/jbc.M910016199

    Article  PubMed  CAS  Google Scholar 

  • Schwab S, Teixeira KRS, Baldani JI (2008) Preparo de caldo de cana-de-açúcar para utilização em meio de cultura de Gluconacetobacter diazotrophicus. Embrapa Agrobiologia, Seropédica, Comunicado Técnico 114

  • Stambuk BU, Dunn B, Alves SL, Duval EH, Sherlock G (2009) Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis. Genome Res 19(12):2271–2278. doi:10.1101/gr.094276.109

    Article  PubMed  CAS  Google Scholar 

  • Sumner ER, Avery SV (2002) Phenotypic heterogeneity: differential stress resistance among individual cells of the yeast Saccharomyces cerevisiae. Microbiology 148(2):345–351

    PubMed  CAS  Google Scholar 

  • Swinnen S, Schaerlaekens K, Pais T, Claesen J, Hubmann G, Yang Y, Demeke M, Foulquié-Moreno MR, Goovaerts A, Souvereyns K, Clement L, Dumortier F, Thevelein JM (2012) Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis. Genome Res 22(5):975–984. doi:10.1101/gr.131698.111

    Article  PubMed  CAS  Google Scholar 

  • US Environmental Protection Agency (2010) Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis. http://www.epa.gov/oms/renewablefuels/420r10006.pdf. Accessed 10 June 2010

  • van Dijken JP, Bauer J, Brambilla L, Duboc P, Francois JM, Gancedo C, Giuseppin MLF, Heijnen JJ, Hoare M, Lange HC, Madden EA, Niederberger P, Nielsen J, Parrou JL, Petit T, Porro D, Reuss M, van Riel N, Rizzi M, Steensma HY, Verrips CT, Vindelov J, Pronk JT (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microbiol Technol 26(9–10):706–714

    Article  Google Scholar 

  • van Leeuwen M, Buijs NAA, Canelas AB, Oudshoorn A, Heijnen JJ, van Gulik WM (2009) The Hagen-Poiseuille pump for parallel fed-batch cultivations in microbioreactors. Chem Eng Sci 64(8):1877–1884. doi:10.1016/j.ces.2009.01.015

    Article  Google Scholar 

  • Verduyn C, Postma E, Scheffers WA, van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8(7):501–517. doi:10.1002/yea.320080703

    Article  PubMed  CAS  Google Scholar 

  • Wheals AE, Basso LC, Alves DMG, Amorim HV (1999) Fuel ethanol after 25 years. Trends Biotechnol 17(12):482–487. doi:10.1016/S0167-7799(99)01384-0

    Article  PubMed  CAS  Google Scholar 

  • Winkler A, Arkind C, Mattison CP, Burkholder A, Knoche K, Ota I (2002) Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress. Eukaryot Cell 1(2):163–173. doi:10.1128/ec.1.2.163-173.2002

    Article  PubMed  CAS  Google Scholar 

  • Zar JH (2010) Biostatistical analysis, 5th edn. Prentice Hall, New Jersey

    Google Scholar 

  • Zuzuarregui A, del Olmo ML (2004) Analyses of stress resistance under laboratory conditions constitute a suitable criterion for wine yeast selection. Antonie van Leeuwenhoek J Microb 85(4):271–280

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, São Paulo, Brazil) for the financial support to this research, which was carried out within the BIOEN framework (grant 2007/59776-7). We also acknowledge financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brasília, Brazil). During her Ph.D. studies, the first author received grants from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brasília, Brazil), from CNPq and from FAPESP (grant 2010/07187-0). We are thankful to the researchers named on Table 1, for providing us with the strains necessary for this study, to Prof. Dr. Maria Elena Taqueda, for helping with statistical analysis, and to Natalia Perrella and Lirian Aranda, for their help in the experiments. The authors confirm that there are no Conflicts of Interest involved in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Gombert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Della-Bianca, B.E., Gombert, A.K. Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry. Antonie van Leeuwenhoek 104, 1083–1095 (2013). https://doi.org/10.1007/s10482-013-0030-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-013-0030-2

Keywords

Navigation