Skip to main content
Log in

A comparison of stress tolerance in YPD and industrial lignocellulose-based medium among industrial and laboratory yeast strains

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

In general, it is believed that fermentation by yeast under harsh industrial conditions, especially if substrates such as wood hydrolysate or lignocellulosic substrates are used, requires the use of so-called industrial strains. In order to check whether this is always true, a comparison of performance was made using two industrial strains and four commonly used laboratory strains, the haploid and diploid versions of CEN-PK and X2180, under industrially relevant stress conditions. The industrial strains were a Swedish commercial baker’s yeast strain and a strain previously isolated from an industrial bioethanol production plant using lignocellulosic substrate. Stress conditions included, apart from growth in the lignocellulosic substrate itself, elevated concentrations of glucose, NaCl, ethanol, and lactate as well as low pH. Results showed that, indeed, the strain adapted to lignocellulosic substrate also possessed the highest growth rate as well as shortest duration of the lag phase in this type of medium. However, the higher the additional stress level, the lower the difference compared to other strains, and X2180 in particular displayed a high resistance to these additional stress conditions. Furthermore, no difference in performance could be detected between the haploid or diploid versions of the laboratory strains. It might be that, at least under some circumstances, a laboratory strain such as X2180 could be an industrially attractive production organism with the advantage of facilitating the possibilities for making controlled genetic manipulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Albers E, Larsson C, Andlid T, Walsh MC, Gustafsson L (2007) Effect of nutrient starvation on the cellular composition and metabolic capacity of Saccharomyces cerevisiae. Appl Environ Microbiol 73:4839–4848. doi:10.1128/AEM.00425-07

    Article  PubMed  CAS  Google Scholar 

  2. Bencini DA, Wild JR, O’Donovan GA (1983) Linear one-step assay for the determination of orthophosphate. Anal Biochem 132:254–258. doi:10.1016/0003-2697(83)90004-0

    Article  PubMed  CAS  Google Scholar 

  3. Brandberg T, Franzen CJ, Gustafsson L (2004) The fermentation performance of nine strains of Saccharomyces cerevisiae in batch and fed-batch cultures in dilute-acid wood hydrolysate. J Biosci Bioeng 98:122–125

    PubMed  CAS  Google Scholar 

  4. Gibson BR, Lawrence SJ, Leclaire JP, Powell CD, Smart KA (2007) Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev 31:535–569. doi:10.1111/j.1574-6976.2007.00076.x

    Article  PubMed  CAS  Google Scholar 

  5. Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G (2006) Bio-ethanol–the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556. doi:10.1016/j.tibtech.2006.10.004

    Article  PubMed  CAS  Google Scholar 

  6. Hansen J, Kielland-Brandt MC (1996) Modification of biochemical pathways in industrial yeasts. J Biotechnol 49:1–12. doi:10.1016/0168-1656(96)01523-4

    Article  PubMed  CAS  Google Scholar 

  7. Herbert D, Phipps PJ, Strange RE (1971) Chemical analysis of microbial cells. In: Norris JR, Ribbons DW (eds) Methods in microbiology. Academic Press, London, pp 209–344

    Chapter  Google Scholar 

  8. Mackenzie KF, Blomberg A, Brown AD (1986) Water stress plating hypersensitivity of yeasts. J Gen Microbiol 132:2053–2056

    PubMed  CAS  Google Scholar 

  9. Martin C, Jönsson LJ (2003) Comparison of the resistance of industrial and laboratory strains of Saccharomyces and Zygosaccharomyces to lignocellulose-derived fermentation inhibitors. Enzyme Microb Technol 32:386–395

    Article  CAS  Google Scholar 

  10. Olofsson K, Bertilsson G, Lidén G (2008) A short review on SSF—an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1:1–14

    Article  Google Scholar 

  11. Purwadi R, Brandberg T, Taherzadeh M (2007) A possible industrial solution to ferment lignocellulosic hydrolyzate to ethanol: continuous cultivation with flocculating yeast. Int J Mol Sci 8:920–932. doi:10.3390/i8090920

    Article  CAS  Google Scholar 

  12. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489. doi:10.1126/science.1114736

    Article  PubMed  CAS  Google Scholar 

  13. Skinner KA, Leathers TD (2004) Bacterial contaminants of fuel ethanol production. J Ind Microbiol Biotechnol 31:401–408. doi:10.1007/s10295-004-0159-0

    Article  PubMed  CAS  Google Scholar 

  14. Taherzadeh MJ, Niklasson C, Lidén G (1999) Conversion of dilute acid hydrolyzates of spruce and birch to ethanol by fed-batch fermentation. Bioresour Technol 69:59–66. doi:10.1016/S0960-8524(98)00169-2

    Article  CAS  Google Scholar 

  15. Walker GM (1998) Yeast physiology and biotechnology. John Wiley and Sons, Chichester

    Google Scholar 

  16. van Maris AJ, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MA, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Leeuwenhoek 90:391–418. doi:10.1007/s10482-006-9085-7

    Article  PubMed  CAS  Google Scholar 

  17. Warringer J, Blomberg A (2003) Automated screening in environmental arrays allows analysis of quantitative phenotypic profiles in Saccharomyces cerevisiae. Yeast 20:53–67. doi:10.1002/yea.931

    Article  PubMed  CAS  Google Scholar 

  18. Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19:1109–1117. doi:10.1021/bp0340180

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Swedish Energy Agency (Project No. 30188-1) and the Royal Swedish Academy of Sciences (Project No. FOA07B-086) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christer Larsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albers, E., Larsson, C. A comparison of stress tolerance in YPD and industrial lignocellulose-based medium among industrial and laboratory yeast strains. J Ind Microbiol Biotechnol 36, 1085–1091 (2009). https://doi.org/10.1007/s10295-009-0592-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-009-0592-1

Keywords

Navigation