Skip to main content
Log in

Mitochondrial involvement to methylglyoxal detoxification: d-Lactate/Malate antiporter in Saccharomyces cerevisiae

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Research during the last years has accumulated a large body of data that suggest that a permanent high flux through the glycolytic pathway may be a source of intracellular toxicity via continuous generation of endogenous reactive dicarbonyl compound methylglyoxal (MG). MG detoxification by the action of the glyoxalase system produces d-lactate. Thus, this article extends our previous work and presents new insights concerning d-lactate fate in aerobically grown yeast cells. Biochemical studies using intact functional mitochondrial preparations derived from Saccharomyces cerevisiae show that d-lactate produced in the extramitochondrial phase can be taken up by mitochondria, metabolised inside the organelles with efflux of newly synthesized malate. Experiments were carried out photometrically and the rate of malate efflux was measured by use of NADP+ and malic enzyme and it depended on the rate of transport across the mitochondrial membrane. It showed saturation characteristics (Km = 20 μM; Vmax = 6 nmol min−1 mg−1 of mitochondrial protein) and was inhibited by α-cyanocinnamate, a non-penetrant compound. Our data reveal that reducing equivalents export from mitochondria is due to the occurrence of a putative d-lactate/malate antiporter which differs from both d-lactate/pyruvate antiporter and d-lactate/H+ symporter as shown by the different Vmax values, pH profile and inhibitor sensitivity. Based on these results we propose that d-lactate translocators and d-lactate dehydrogenases work together for decreasing the production of MG from the cytosol, thus mitochondria could play a pro-survival role in the metabolic stress response as well as for d-lactate-dependent gluconeogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SCM:

Saccharomyces cerevisiae mitochondria

α-CCN:

α-Cyanocinnamate

MG:

Methylglyoxal

FCCP:

Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone

ΔΨ:

Membrane potential

References

  • Aguilera J, Prieto JA (2001) The Saccharomyces cerevisiae aldose reductase is implied in the metabolism of methylglyoxal in response to stress conditions. Curr Genet 39(5–6):273–283

    Article  PubMed  CAS  Google Scholar 

  • Aguilera J, Prieto JA (2004) Yeast cells display a regulatory mechanism in response to methylglyoxal. FEMS Yeast Res 4(6):633–641

    Article  PubMed  CAS  Google Scholar 

  • Bito A, Haider M, Hadler I, Breitenbach M (1997) Identification, phenotypic analysis of two glyoxalase II encoding genes from Saccharomyces cerevisiae, GLO2 and GLO4, and intracellular localization of the corresponding proteins. J Biol Chem 272:21509–21519

    Article  PubMed  CAS  Google Scholar 

  • Bito A, Haider M, Briza P, Strasser P, Breitenbach M (1999) Heterologous expression, purification, and kinetic comparison of the cytoplasmic and mitochondrial glyoxalase II enzymes, Glo2p and Glo4p, from Saccharomyces cerevisiae. Protein Exp Purif 17:456–464

    Article  CAS  Google Scholar 

  • Boles E, de Jong-Gubbels P, Pronk JT (1998) Identification and characterization of MAE1, the Saccharomyces cerevisiae structural gene encoding mitochondrial malic enzyme. J Bacteriol 180:2875–2882

    PubMed  CAS  Google Scholar 

  • Castegna A, Scarcia P, Agrimi G, Palmieri L, Rottensteiner H, Spera I, Germinario L, Palmieri F (2010) Identification and functional characterization of a novel mitochondrial carrier for citrate and oxoglutarate in Saccharomyces cerevisiae. J Biol Chem 285:17359–17370

    Article  PubMed  CAS  Google Scholar 

  • Chambers P, Issaka A, Palecek SP (2004) Saccharomyces cerevisiae JEN1 promoter activity is inversely related to concentration of repressing sugar. Appl Environ Microbiol 70:8–17

    Article  PubMed  CAS  Google Scholar 

  • Chelstowska A, Liu Z, Jia Y, Amberg D, Butow RA (1999) Signalling between mitochondria and the nucleus regulates the expression of a new d-lactate dehydrogenase activity in yeast. Yeast 15:1377–1391

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Ruiz R, Uribe-Carvajal S, Devin A, Rigoulet M (2009) Tumor cell energy metabolism and its common features with yeast metabolism. Biochim Biophys Acta 1796:252–265

    Article  PubMed  CAS  Google Scholar 

  • Di Martino C, Pallotta ML (2011) Mitochondria-localized NAD biosynthesis by nicotinamide mononucleotide adenylyltransferase in Jerusalem artichoke (Helianthus tuberosus L.) heterotrophic tissues. Planta 234(4):657–7010

    Article  PubMed  Google Scholar 

  • Di Martino C, Pizzuto R, Pallotta ML, De Santis A, Passarella S (2006) Mitochondrial transport in proline catabolism in plants: the existence of two separate translocators in mitochondria isolated from durum wheat seedlings. Planta 223:1123–1133

    Article  PubMed  Google Scholar 

  • Dixon M (1953) The determination of enzyme inhibitor constants. Biochem J 55:170–171

    PubMed  CAS  Google Scholar 

  • Douce R, Bourguignon J, Brouquisse R, Neuburger M (1987) Isolation of plant mitochondria: general principles and criteria of integrity. Methods Enzymol 148:403–415

    Article  CAS  Google Scholar 

  • Estojak J, Brent R, Golemis EA (1995) Correlation of two-hybrid affinity data with in vitro measurements. Mol Cell Biol 15:5820–5829

    PubMed  CAS  Google Scholar 

  • Fratianni A, Pastore D, Pallotta ML, Chiatante D, Passarella S (2001) Increase of membrane permeability of mitochondria isolated from water stress adapted potato cells. Biosci Rep 21:81–91

    Article  PubMed  CAS  Google Scholar 

  • Frazier AE, Chacinska A, Truscott AN, Guiard B, Pfanner N, Rehling P (2003) Mitochondria use different mechanisms for transport of multispanning membrane proteins through the intermembrane space. Mol Cell Biol 23:7818–7828

    Article  PubMed  CAS  Google Scholar 

  • Gibson N, McAlister-Henn L (2003) Physical and genetic interactions of cytosolic malate dehydrogenase with other gluconeogenic enzymes. J Biol Chem 278(28):25628–25636

    Article  PubMed  CAS  Google Scholar 

  • Gomes RA, Silva MS, Miranda HV, Ferreira AEN, Cordeiro CAA, Freire AP (2005) Protein glycation in Saccharomyces cerevisiae Argpyrimidine formation and methylglyoxal catabolism. FEBS J 272:4521–4531

    Article  PubMed  CAS  Google Scholar 

  • Gomes RA, Vicente Miranda H, Silva MS, Graça G, Coelho AV, Ferreira AE, Cordeiro C, Freire AP (2006) Yeast protein glycation in vivo by methylglyoxal. Molecular modification of glycolytic enzymes and heat shock proteins. FEBS J 273(23):5273–5287

    Article  PubMed  CAS  Google Scholar 

  • Hachiya NS, Sakasegawa Y, Jozuka A, Tsukita S, Kaneko K (2004) Interaction of d-lactate dehydrogenase protein 2 (Dld2p) with F-actin: implication for an alternative function of Dld2p. Biochem Biophys Res Commun 319(1):78–82

    Article  PubMed  CAS  Google Scholar 

  • Halestrap AP, Denton RM (1975) The specificity and metabolic implications of the inhibition of pyruvate transport in isolated mitochondria and intact tissue preparations by alpha-Cyano-4-hydroxycinnamate and related compounds. Biochem J 148:97–106

    PubMed  CAS  Google Scholar 

  • He W, Miao FJ, Lin DC, Schwandner RT, Wang Z, Gao Chen JL, Tian H, Ling L (2004) Citric acid cycle intermediates are ligands for orphan G-protein-coupled receptors. Nature 429:188–193

    Article  PubMed  CAS  Google Scholar 

  • Hipkiss AR (2006) Dietary restriction, glycolysis, hormesis and ageing. Biogerontology 8:221–224

    Article  PubMed  Google Scholar 

  • Hipkiss AR (2009) NAD+ availability and proteotoxicity. Neuromolecular Med 11:97–100

    Article  PubMed  CAS  Google Scholar 

  • Inoue Y, Kimura A (1995) Methylglyoxal and regulation of its metabolism in microorganisms. Adv Microb Physiol 37:177–227

    Article  PubMed  CAS  Google Scholar 

  • Inoue Y, Maeta K, Nomura W (2011) Glyoxalase system in yeasts: structure, function, and physiology. Semin Cell Dev Biol 22:278–284

    Article  PubMed  CAS  Google Scholar 

  • Kalapos MP (1999) Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications. Toxicol Lett 110:145–175

    Article  PubMed  CAS  Google Scholar 

  • Lanoue FK and Schoolwerth AC (1984) in New Comprehensive Biochemistry, Bioenergetics (Ernster L, ed), pp. 221–268, Elsevier Biomedical Press, Amsterdam

  • Lowry OH, Rosebrough NJ, Farr AL, Randall R (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Maeta K, Mori K, Takatsume Y, Izawa S, Inoue Y (2005) Diagnosis of cell death induced by methylglyoxal, a metabolite derived from glycolysis, in Saccharomyces cerevisiae. FEMS Microbiol Lett 243:87–92

    Article  PubMed  CAS  Google Scholar 

  • Martins AM, Cordeiro C, Freire AP (1999) Glyoxalase II in Saccharomyces cerevisiae: in situ kinetics using the 5,5′-dithiobis(2-nitrobenzoic acid) assay. Arch Biochem Biophys 366:15–20

    Article  PubMed  CAS  Google Scholar 

  • Miyagi H, Kawai S, Murata K (2009) Two sources of mitochondrial NADPH in the yeast Saccharomyces cerevisiae. J Biol Chem 284:7553–7560

    Article  PubMed  CAS  Google Scholar 

  • Moore AL, Bonner WD Jr (1982) Measurements of membrane potentials in plant mitochondria with the safranine. Plant Physiol 70:1271–1276

    Article  PubMed  CAS  Google Scholar 

  • Mourier A, Vallortigara J, Yoboue ED, Rigoulet M, Devin A (2008) Kinetic activation of yeast mitochondrial d-lactate dehydrogenase by carboxylic acids. Biochim Biophys Acta 1777:1283–1288

    Article  PubMed  CAS  Google Scholar 

  • Pallotta ML (2011) Evidence for the presence of a FAD pyrophosphatase and a FMN phosphohydrolase in yeast mitochondria: a possible role in flavin homeostasis. Yeast 28(10):693–705

    Google Scholar 

  • Pallotta ML, Brizio C, Fratianni A, De Virgilio C, Barile M, Passerella S (1998) Saccharomyces cerevisiae mitochondria can synthesise FMN and FAD from externally added riboflavin and export them to the extramitochondrial phase. FEBS Lett 428:245–249

    Article  PubMed  CAS  Google Scholar 

  • Pallotta ML, Fratianni A, Passarella S (1999) Metabolite transport in isolated yeast mitochondria: fumarate/malate and succinate/malate antiports. FEBS Lett 462:313–316

    Article  PubMed  CAS  Google Scholar 

  • Pallotta ML, Valenti D, Iacovino M, Passarella S (2004) Two separate pathways for d-lactate oxidation by Saccharomyces cerevisiae mitochondria which differ in energy production and carrier involvement. BBA-Bioenergetics 1608:104–113

    Article  PubMed  CAS  Google Scholar 

  • Palmieri L, Runswick MJ, Fiermonte G, Walker JE, Palmieri F (2000) Yeast mitochondrial carriers: bacterial expression, biochemical identification and metabolic significance. J Bioenerg Biomembr 32:67–77

    Article  PubMed  CAS  Google Scholar 

  • Palmieri F, Agrimi G, Blanco E, Castegna A, Di Noia MA, Iacobazzi V, Lasorsa FM, Marobbio CM, Palmieri L, Scarcia P, Todisco S, Vozza A, Walker J (2006) Identification of mitochondrial carriers in Saccharomyces cerevisiae by transport assay of reconstituted recombinant proteins. Biochim Biophys Acta 1757:1249–1262

    Article  PubMed  CAS  Google Scholar 

  • Palmieri F (2008) Diseases caused by defects of mitochondrial carriers: a review. Biochim Biophys Acta 1777:564–578

    Article  PubMed  CAS  Google Scholar 

  • Palmieri F, Pierri CL (2010) Mitochondrial metabolite transport. Essays Biochem 47:37–52

    Article  PubMed  CAS  Google Scholar 

  • Palmieri F, Pierri CL, De Grassi A, Nunes-Nesi A, Fernie AR (2011) Evolution, structure and function of mitochondrial carriers: a review with new insights. Plant J 66:161–181

    Article  PubMed  CAS  Google Scholar 

  • Passarella S, Atlante A, Valenti D, de Bari L (2003) The role of mitochondrial transport in energy metabolism. Mitochondrion 2:319–343

    Article  PubMed  CAS  Google Scholar 

  • Rabbani N, Thornalley PJ (2008) Dicarbonyls linked to damage to the powerhouse: glycation of mitochondrial proteins and oxidative stress. Biochem Soc Trans 38:1045–1050

    Article  Google Scholar 

  • Rojo EE, Guiard B, Neupert W, Stuart RA (1998) Sorting of d-lactate dehydrogenase to the inner membrane of mitochondria. Analysis of topogenic signal and energetic requirements. J Biol Chem 273:8040–8047

    Article  PubMed  CAS  Google Scholar 

  • Takatsume Y, Izawa S, Inoue Y (2004) Identification of thermostable glyoxalase I in the fission yeast Schizosaccharomyces pombe. Arch Microbiol 181:371–377

    Article  PubMed  CAS  Google Scholar 

  • Turk Z (2010) Glycotoxins, carbonyl stress and relevance to diabetes and its complications. Physiol Res 59:147–156

    PubMed  CAS  Google Scholar 

  • Walker ME, Val DL, Rohde M, Devenish RJ, Wallace JC (1991) Yeast pyruvate carboxylase: identification of two genes encoding isoenzymes. Biochem Biophys Res Commun 176:1210–1217

    Article  PubMed  CAS  Google Scholar 

  • Webb BA, Chimenti M, Jacobson MP, Barber DL (2011) Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer 11:671–677

    Article  PubMed  CAS  Google Scholar 

  • Wendler A, Irsch T, Rabbani NPJ, Krauth-Siegel RL (2009) Glyoxalase II does not support methylglyoxal detoxification but serves as a general trypanothione thioesterase in African trypanosomes. Mol Biochem Parasitol 163:119–127

    Article  Google Scholar 

  • Zara V, Ferramosca A, Capobianco L, Baltz KM, Randel O, Rassow J, Palmieri F, Papatheodorou P (2007) Biogenesis of yeast dicarboxylate carrier: the carrier signature facilitates translocation across the mitochondrial outer membrane. J Cell Sci 120:4099–4106

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Schneider C, Ottmers L et al (2005) Genomic scale mutant hunt identifies cell size homeostasis genes in S. cerevisiae. Curr Biol 12:1992–2001

    Article  Google Scholar 

  • Zinser E, Daum G (1995) Isolation and biochemical characterization of organelles from the yeast, Saccharomyces cerevisiae. Yeast 11:493–536

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank the anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luigia Pallotta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pallotta, M.L. Mitochondrial involvement to methylglyoxal detoxification: d-Lactate/Malate antiporter in Saccharomyces cerevisiae . Antonie van Leeuwenhoek 102, 163–175 (2012). https://doi.org/10.1007/s10482-012-9724-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-012-9724-0

Keywords

Navigation