Skip to main content
Log in

Structure preserving integration and model order reduction of skew-gradient reaction–diffusion systems

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Activator-inhibitor FitzHugh–Nagumo (FHN) equation is an example for reaction–diffusion equations with skew-gradient structure. We discretize the FHN equation using symmetric interior penalty discontinuous Galerkin (SIPG) method in space and average vector field (AVF) method in time. The AVF method is a geometric integrator, i.e. it preserves the energy of the Hamiltonian systems and energy dissipation of the gradient systems. In this work, we show that the fully discrete energy of the FHN equation satisfies the mini-maximizer property of the continuous energy for the skew-gradient systems. We present numerical results with traveling fronts and pulses for one dimensional, two coupled FHN equations and three coupled FHN equations with one activator and two inhibitors in skew-gradient form. Turing patterns are computed for fully discretized two dimensional FHN equation in the form of spots and labyrinths. Because the computation of the Turing patterns is time consuming for different parameters, we applied model order reduction with the proper orthogonal decomposition (POD). The nonlinear term in the reduced equations is computed using the discrete empirical interpolation (DEIM) with SIPG discretization. Due to the local nature of the discontinuous Galerkin method, the nonlinear terms can be computed more efficiently than for the continuous finite elements. The reduced solutions are very close to the fully discretized ones. The efficiency and accuracy of the POD and POD–DEIM reduced solutions are shown for the labyrinth-like patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Antil, H., Heinkenschloss, M., & Sorensen, C. D. (2014). Application of the discrete empirical interpolation method to reduced order modeling of nonlinear and parametric systems. In A. Quarteroni & G. Rozza (Eds.), Reduced order methods for modeling and computational reduction, MS & A—modeling, simulation and applications (Vol. 9, pp. 101–136). Berlin: Springer International Publishing.

    Google Scholar 

  • Arnold, D. N. (1982). An interior penalty finite element method with discontinuous elements. SIAM Journal on Numerical Analysis, 19, 724–760.

    Article  Google Scholar 

  • Barrault, M., Maday, Y., Nguyen, N. C., & Patera, A. T. (2004). An empirical interpolation method: Application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathematique, 339(9), 667–672. doi:10.1016/j.crma.2004.08.006.

    Article  Google Scholar 

  • Celledoni, E., Grimm, V., McLachlan, R. I., McLaren, D. I., O’Neale, D. J., Owren, B., et al. (2012). Preserving energy resp. dissipation in numerical PDEs using the “Average Vector Field” method. Journal of Computational Physics, 231, 6770–6789.

    Article  Google Scholar 

  • Chaturantabut, S., & Sorensen, D. C. (2010). Nonlinear model reduction via discrete empirical interpolation. SIAM Journal of Scientific Computation, 32(5), 2737–2764.

    Article  Google Scholar 

  • Chen, C. N., & Hu, X. (2014). Stability analysis for standing pulse solutions to FitzHugh–Nagumo equations. Calculus of Variations and Partial Differential Equations, 49, 827–845. doi:10.1007/s00526-013-0601-0.

    Article  Google Scholar 

  • Grepl, M. A. (2012). Model order reduction of parametrized nonlinear reaction-diffusion systems. Computers & Chemical Engineering, 43, 33–44. doi:10.1016/j.compchemeng.2012.03.013.

    Article  Google Scholar 

  • Hairer, E., & Lubich, C. (2014). Energy-diminishing integration of gradient systems. IMA Journal of Numerical Analysis, 34(2), 452–461. doi:10.1093/imanum/drt031.

    Article  Google Scholar 

  • van Heijster, P., & Sandstede, B. (2011). Planar radial spots in a three-component FitzHugh–Nagumo system. Journal of Nonlinear Science, 21(5), 705–745. doi:10.1007/s00332-011-9098-x.

    Article  Google Scholar 

  • van Heijster, P., Doelman, A., & Kaper, T. J. (2008). Pulse dynamics in a three-component system: Stability and bifurcations. Physica D: Nonlinear Phenomena, 237(24), 3335–3368. doi:10.1016/j.physd.2008.07.014.

    Article  Google Scholar 

  • Kunisch, K., & Volkwein, S. (2001). Galerkin proper orthogonal decomposition methods for parabolic problems. Numerische Mathematik, 90(1), 117–148. doi:10.1007/s002110100282.

    Article  Google Scholar 

  • Marquez-Lago, T. T., & Padilla, P. (2014). A selection criterion for patterns in reactiondiffusion systems. Theoretical Biology and Medical Modelling, 11, 7. doi:10.1186/1742-4682-11-7.

    Article  Google Scholar 

  • Or-Guil, M., Bode, M., Schenk, C. P., & Purwins, H. G. (1998). Spot bifurcations in three-component reaction-diffusion systems: The onset of propagation. Physical Review E, 57, 6432–6437. doi:10.1103/PhysRevE.57.6432.

    Article  Google Scholar 

  • Rivière, B. (2008). Discontinuous Galerkin methods for solving elliptic and parabolic equations. Society for Industrial and Applied Mathematics. doi:10.1137/1.9780898717440.

  • Tiso, P., & Rixen, D. J. (2013). Discrete empirical interpolation method for finite element structural dynamics. In: Topics in Nonlinear Dynamics, Volume 1 Proceedings of the 31st IMAC, A Conference on Structural Dynamics, Topics in nonlinear dynamics, Vol. 1, The Society for Experimental Mechanics, pp. 203–212.

  • Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 237(641), 37–72. doi:10.1098/rstb.1952.0012.

    Article  Google Scholar 

  • Yanagida, E. (2002a). Mini-maximizers for reaction-diffusion systems with skew-gradient structure. Journal of Differential Equations, 179, 311–335. doi:10.1006/jdeq.2001.4028.

    Article  Google Scholar 

  • Yanagida, E. (2002b). Standing pulse solutions in reaction-diffusion systems with skew-gradient structure. Journal of Dynamics and Differential Equations, 14, 189–205. doi:10.1023/A:1012915411490.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewer for the comments and suggestions that help improve the manuscript. This work has been supported by METU BAP-07-05-2015 009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bülent Karasözen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karasözen, B., Küçükseyhan, T. & Uzunca, M. Structure preserving integration and model order reduction of skew-gradient reaction–diffusion systems. Ann Oper Res 258, 79–106 (2017). https://doi.org/10.1007/s10479-015-2063-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-2063-6

Keywords

Mathematics Subject Classification

Navigation