Skip to main content
Log in

Planar Radial Spots in a Three-Component FitzHugh–Nagumo System

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

Localized planar patterns arise in many reaction-diffusion models. Most of the paradigm equations that have been studied so far are two-component models. While stationary localized structures are often found to be stable in such systems, travelling patterns either do not exist or are found to be unstable. In contrast, numerical simulations indicate that localized travelling structures can be stable in three-component systems. As a first step towards explaining this phenomenon, a planar singularly perturbed three-component reaction-diffusion system that arises in the context of gas-discharge systems is analysed in this paper. Using geometric singular perturbation theory, the existence and stability regions of radially symmetric stationary spot solutions are delineated and, in particular, stable spots are shown to exist in appropriate parameter regimes. This result opens up the possibility of identifying and analysing drift and Hopf bifurcations, and their criticality, from the stationary spots described here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. NIST, Gaithersburg (1964)

    MATH  Google Scholar 

  • Alexander, J., Gardner, R., Jones, C.: A topological invariant arising in the stability analysis of travelling waves. J. Reine Angew. Math. 410, 167–212 (1990)

    MathSciNet  MATH  Google Scholar 

  • Brezis, H.: Symmetry in nonlinear PDE’s. In: Differential Equations: La Pietra 1996, Florence. Proc. Sympos. Pure Math., vol. 65, pp. 1–12. Amer. Math. Soc., Providence (1999)

    Google Scholar 

  • Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983)

    Article  MATH  Google Scholar 

  • Brunovský, P.: C r-inclination theorems for singularly perturbed equations. J. Differ. Equ. 155, 133–152 (1999)

    Article  MATH  Google Scholar 

  • Doelman, A., van der Ploeg, H.: Homoclinic stripe patterns. SIAM J. Appl. Dyn. Syst. 1, 65–104 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Doelman, A., Gardner, R.A., Kaper, T.J.: A Stability Index Analysis of 1-D Patterns of the Gray–Scott Model. Mem. Amer. Math. Soc., vol. 155 (2002), xii+64

    Google Scholar 

  • Doelman, A., van Heijster, P., Kaper, T.J.: Pulse dynamics in a three-component system: existence analysis. J. Dyn. Differ. Equ. 21, 73–115 (2009)

    Article  MATH  Google Scholar 

  • Fenichel, N.: Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21, 193–226 (1971/1972)

    Article  MathSciNet  Google Scholar 

  • Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68, 209–243 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in R n. In: Mathematical Analysis and Applications, Part A. Adv. in Math. Suppl. Stud., vol. 7, pp. 369–402. Academic Press, New York (1981)

    Google Scholar 

  • Gierer, A., Meinhardt, W.: Theory of biological pattern formation. Kybernetik 12, 30–39 (1972)

    Article  Google Scholar 

  • Gray, P., Scott, S.K.: Autocatalytic reactions in the isothermal, continuous stirred tank reactor—oscillations and instabilities in the system A+2B→3B; B→C. Chem. Eng. Sci. 39, 1087–1097 (1984)

    Article  Google Scholar 

  • Greenberg, J.M.: Axi-symmetric, time-periodic solutions of reaction–diffusion equations. SIAM J. Appl. Math. 34, 391–397 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  • Hagan, P.S.: Target patterns in reaction-diffusion systems. Adv. Appl. Math. 2, 400–416 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Hartman, P., Watson, G.S.: “Normal” distribution functions on spheres and the modified Bessel functions. Ann. Probab. 2, 593–607 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)

    MATH  Google Scholar 

  • Hodgkin, A.L., Huxley, A.F., Katz, B.: Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. 116, 424–448 (1952)

    Google Scholar 

  • Jacobsen, J., Schmitt, K.: Radial solutions of quasilinear elliptic differential equations. In: Handbook of Differential Equations, pp. 359–435. Elsevier/North-Holland, Amsterdam (2004)

    Google Scholar 

  • Jones, C.K.R.T.: Stability of the travelling wave solution of the FitzHugh–Nagumo system. Trans. Am. Math. Soc. 286, 431–469 (1984)

    Article  MATH  Google Scholar 

  • Jones, C.K.R.T.: Radial solutions of a semilinear elliptic equation at a critical exponent. Arch. Ration. Mech. Anal. 104, 251–270 (1988)

    Article  MATH  Google Scholar 

  • Jones, C.K.R.T.: Geometric singular perturbation theory. In: Dynamical Systems, Montecatini Terme, 1994. Lecture Notes in Mathematics, vol. 1609, pp. 44–118. Springer, Berlin (1995)

    Chapter  Google Scholar 

  • Jones, C.K.R.T., Küpper, T., Plakties, H.: A shooting argument with oscillation for semilinear elliptic radially symmetric equations. Proc. R. Soc. Edinb. A 108, 165–180 (1988)

    MATH  Google Scholar 

  • Kaper, T.J.: An introduction to geometric methods and dynamical systems theory for singular perturbation problems. In: Analyzing Multiscale Phenomena Using Singular Perturbation Methods, Baltimore, MD, 1998. Proc. Sympos. Appl. Math., vol. 56, pp. 85–131. Amer. Math. Soc., Providence (1999)

    Google Scholar 

  • Kaper, T.J., Jones, C.K.R.T.: A primer on the exchange lemma for fast-slow systems. In: Multiple-Time-Scale Dynamical Systems, Minneapolis, MN, 1997. IMA Vol. Math. Appl., vol. 122, pp. 65–87. Springer, New York (2001)

    Chapter  Google Scholar 

  • Klausmeier, C.A.: Regular and irregular patterns in semiarid vegetation. Science 285, 838–838 (1999)

    Google Scholar 

  • Kolokolnikov, T., Ward, M.J.: Reduced wave Green’s functions and their effect on the dynamics of a spike for the Gierer–Meinhardt model. Eur. J. Appl. Math. 14, 513–545 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Kolokolnikov, T., Sun, W., Ward, M., Wei, J.: The stability of a stripe for the Gierer–Meinhardt model and the effect of saturation. SIAM J. Appl. Dyn. Syst. 5, 313–363 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Kopell, N., Howard, L.N.: Target pattern and spiral solutions to reaction–diffusion equations with more than one space dimension. Adv. Appl. Math. 2, 417–449 (1981a)

    Article  MathSciNet  MATH  Google Scholar 

  • Kopell, N., Howard, L.N.: Target patterns and horseshoes from a perturbed central-force problem: some temporally periodic solutions to reaction–diffusion equations. Stud. Appl. Math. 64, 1–56 (1981b)

    MathSciNet  MATH  Google Scholar 

  • Kuzin, I., Pohozaev, S.: Entire Solutions of Semilinear Elliptic Equations. Progress in Nonlinear Differential Equations and their Applications, vol. 33. Birkhäuser, Basel (1997)

    MATH  Google Scholar 

  • Lloyd, D., Sandstede, B.: Localized radial solutions of the Swift–Hohenberg equation. Nonlinearity 22, 485–524 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. Springer, New York (1966)

    MATH  Google Scholar 

  • Muratov, C.B., Osipov, V.V.: Static spike autosolitons in the Gray–Scott model. J. Phys. A 33, 8893–8916 (2000)

    Article  MathSciNet  Google Scholar 

  • Muratov, C.B., Osipov, V.V.: Traveling spike autosolitons in the Gray–Scott model. Physica D 155, 112–131 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Muratov, C.B., Osipov, V.V.: Stability of the static spike autosolitons in the Gray–Scott model. SIAM J. Appl. Math. 62, 1463–1487 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Nishiura, Y., Suzuki, H.: Higher dimensional SLEP equation and applications to morphological stability in polymer problems. SIAM J. Math. Anal. 36, 916–966 (2004/05)

    Article  MathSciNet  Google Scholar 

  • Nishiura, Y., Teramoto, T., Ueda, K.-I.: Scattering of traveling spots in dissipative systems. Chaos 15, 047509 (2005)

    Article  MathSciNet  Google Scholar 

  • Oberhettinger, F., Badii, L.: Tables of Laplace Transforms. Springer, New York (1973)

    MATH  Google Scholar 

  • Or-Guil, M., Bode, M., Schenk, C.P., Purwins, H.-G.: Spot bifurcations in three-component reaction–diffusion systems: The onset of propagation. Phys. Rev. E 57, 6432–6437 (1998)

    Article  Google Scholar 

  • Phillips, R.S., Malin, H.: Bessel function approximations. Am. J. Math. 72, 407–418 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  • Promislow, K.: A renormalization method for modulational stability of quasi-steady patterns in dispersive systems. SIAM J. Math. Anal. 33, 1455–1482 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Rotstein, H.G., Zhabotinsky, A.M., Epstein, I.R.: Dynamics of one- and two-dimensional kinks in bistable reaction–diffusion equations with quasidiscrete sources of reaction. Chaos 11, 833–842 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Sandstede, B.: Stability of travelling waves. In: Handbook of Dynamical Systems, vol. 2, pp. 983–1055. North-Holland, Amsterdam (2002)

    Chapter  Google Scholar 

  • Scheel, A.: Radially Symmetric Patterns of Reaction–Diffusion Systems. Mem. Amer. Math. Soc., vol. 165 (2003), viii+86

    Google Scholar 

  • Schenk, C.P., Or-Guil, M., Bode, M., Purwins, H.-G.: Interacting pulses in three-component reaction–diffusion systems on two-dimensional domains. Phys. Rev. Lett. 78, 3781–3784 (1997)

    Article  Google Scholar 

  • Schütz, P., Bode, M., Gafiichuk, V.V.: Transition from stationary to traveling localized patterns in a two-dimensional reaction–diffusion system. Phys. Rev. E 52, 4465–4473 (1995)

    Article  MathSciNet  Google Scholar 

  • van Heijster, P., Doelman, A., Kaper, T.J.: Pulse dynamics in a three-component system: stability and bifurcations. Physica D 237, 3335–3368 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • van Heijster, P., Doelman, A., Kaper, T.J., Promislow, K.: Front interactions in a three-component system. SIAM J. Appl. Dyn. Syst. 9, 292–332 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • van Heijster, P., Doelman, A., Kaper, T.J., Nishiura, Y., Ueda, K.-I.: Pinned fronts in heterogeneous media of jump type. Nonlinearity 24, 127–157 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Vanag, V.K., Epstein, I.R.: Localized patterns in reaction–diffusion systems. Chaos 17, 037110 (2007)

    Article  MathSciNet  Google Scholar 

  • Wei, J.: On single interior spike solutions of the Gierer–Meinhardt system: uniqueness and spectrum estimates. Eur. J. Appl. Math. 10, 353–378 (1999)

    Article  MATH  Google Scholar 

  • Wei, J.: Pattern formations in two-dimensional Gray–Scott model: existence of single-spot solutions and their stability. Physica D 148, 20–48 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Wei, J., Winter, M.: Asymmetric spotty patterns for the Gray–Scott model in R 2. Stud. Appl. Math. 110, 63–102 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Yanagida, E.: Stability of fast travelling pulse solutions of the FitzHugh–Nagumo equations. J. Math. Biol. 22, 81–104 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Yuan, X., Teramoto, T., Nishiura, Y.: Heterogeneity-induced defect bifurcation and pulse dynamics for a three-component reaction–diffusion system. Phys. Rev. E 75, 036220 (2007)

    Article  MathSciNet  Google Scholar 

  • Zelik, S., Mielke, A.: Multi-Pulse Evolution and Space-Time Chaos in Dissipative Systems. Mem. Amer. Math. Soc., vol. 198 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter van Heijster.

Additional information

Communicated by P. Newton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Heijster, P., Sandstede, B. Planar Radial Spots in a Three-Component FitzHugh–Nagumo System. J Nonlinear Sci 21, 705–745 (2011). https://doi.org/10.1007/s00332-011-9098-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-011-9098-x

Keywords

Mathematics Subject Classification (2000)

Navigation