Skip to main content
Log in

Application of direct meshless local Petrov–Galerkin (DMLPG) method for some Turing-type models

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Mathematical modeling of pattern formation in developmental biology leads to non-linear reaction–diffusion systems which are usually highly stiff in both diffusion and reaction terms. In this paper, the Direct Meshless Local Petrov–Galerkin (DMLPG) procedure is applied to find the numerical solution of some non-linear time-dependent reaction–diffusion systems such as Schnakenberg model, Gierer–Meinhardt model, FitzHugh–Nagumo model and Gray–Scott model. As far as we know, it is the first time that DMLPG method is applied for solving non-linear partial differential equations (PDEs) and systems of PDEs. Computational efficiency is the most significant advantage of the DMLPG method in comparison with the classic Meshless Local Petrov–Galerkin (MLPG) method. This is due to the fact that DMLPG shifts the numerical integrations over low-degree polynomials instead of over complicated moving least squares (MLS) shape functions and this reduces the computational costs, significantly. The main aim of this paper is to show that the DMLPG method is also suitable for solving the non-linear time-dependent systems, especially reaction–diffusion systems. Numerical results support the good efficiency of the proposed method for solving non-linear reaction–diffusion systems. Also it is shown that DMLPG provides considerable savings in computational time in comparison with the classical MLPG method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ambrosio B, Aziz-Alaoui MA (2012) Synchronization and control of coupled reaction–diffusion systems of the FitzHugh–Nagumo type. Comput Math Appl 64:934–943

    Article  Google Scholar 

  2. Arraras A, Gaspar FJ, Portero L, Rodrigo C (2015) Domain decomposition multigrid methods for nonlinear reaction–diffusion problems. Commun Nonlinear Sci Numer Simul 20:699–710

    Article  MathSciNet  MATH  Google Scholar 

  3. Atluri SN (2004) The meshless method (MLPG) for domain and BIE discretizations. Tech Science Press

  4. Atluri SN, Shen SP (2002) The meshless local Petrov–Galerkin (MLPG)method: a simple and less-costly alternative to the finite element methods. Comput Model Eng Sci (CMES) 3(1):11–51

    MathSciNet  MATH  Google Scholar 

  5. Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22:117–127

    Article  MathSciNet  MATH  Google Scholar 

  6. Borckmans P, De Wit A, Dewel G (1992) Competition in ramped Turing structures. Phys A 188:137–157

    Article  Google Scholar 

  7. Dai B, Zheng B, Liang Q, Wang L (2013) Numerical solution of transient heat conduction problems using improved meshless local Petrov–Galerkin method. Appl Math Comput 219:10044–10052

    MathSciNet  MATH  Google Scholar 

  8. Dai B, Cheng J, Zheng B (2013) A moving Kriging interpolation-based meshless local Petrov–Galerkin method for elastodynamic analysis. Int J Appl Mech 5:1350011–1350021

    Article  Google Scholar 

  9. Dai B, Wang Q, Zhang W, Wang L (2014) The complex variable meshless local Petrov–Galerkin method for elastodynamic problems. Appl Math Comput 243:311–321

    MathSciNet  MATH  Google Scholar 

  10. Dehghan M, Abbaszadeh M (2016) Variational multiscale element free Galerkin (VMEFG) and local discontinuous Galerkin (LDG) methods for solving two-dimensional Brusselator reaction-diffusion system with and without cross-diffusion. Comput Methods Appl Mech Eng 300:770–797

    Article  MathSciNet  Google Scholar 

  11. Dehghana M, Abbaszadeh M, Mohebbi A (2015) The numerical solution of the two-dimensional sinh-Gordon equation via three meshless methods. Eng Anal Bound Elem 51:220–235

    Article  MathSciNet  Google Scholar 

  12. Dehghan M, Ghesmati A (2010) Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput Phys Commun 181:772–786

    Article  MathSciNet  MATH  Google Scholar 

  13. Dehghan M, Salehi R (2013) A meshfree weak-strong (MWS) form method for the unsteady magnetohydrodynamic (MHD) flow in pipe with arbitrary wall conductivity. Comput Mech 52:1445–1462

    Article  MathSciNet  MATH  Google Scholar 

  14. Dehghan M, Salehi R (2014) A meshless local Petrov–Galerkin method for the time-dependent Maxwell equations. J Comput Appl Math 268:93–110

    Article  MathSciNet  MATH  Google Scholar 

  15. De Wit A, Dewel G, Borckmans P, Walgraef D (1992) Three-dimensional dissipative structures in reaction–diffusion systems. Phys D 61:289–296

    Article  MATH  Google Scholar 

  16. Dong L, Alotaibi A, Mohiuddine SA, Atluri SN (2014) Computational methods in engineering: a variety of primal and mixed methods, with global and local interpolations, for well-posed or ill-Posed BCs. Comput Model Eng Sci (CMES) 99:1–85

    MathSciNet  Google Scholar 

  17. El’kin YuE, Moskalenko AV, Starmer ChF (2007) Spontaneous halt of spiral wave drift in homogeneous excitable media. Mat Biolog Bioinform 2(1):73–81

    Article  Google Scholar 

  18. Fernandes RI, Fairweather G (2012) An ADI extrapolated Crank–Nicolson orthogonal spline collocation method for nonlinear reaction–diffusion systems. J Comput Phys 231:6248–6267

    Article  MathSciNet  MATH  Google Scholar 

  19. FitzHugh R (1955) Mathematical models of threshold phenomena in the nerve membrane. Bull Math Biophys 17:257–278

    Article  Google Scholar 

  20. FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1:445–466

    Article  Google Scholar 

  21. Garzon-Alvarado DA, Galeano CH, Mantilla JM (2011) Turing pattern formation for reaction-convection-diffusion systems in fixed domains submitted to toroidal velocity fields. Appl Math Model 35:4913–4925

    Article  MathSciNet  MATH  Google Scholar 

  22. Ghergu M (2009) Steady-state solutions for Gierer–Meinhardt type systems with Dirichlet boundary condition. Trans Am Math Soc 361:3953–3976

    Article  MathSciNet  MATH  Google Scholar 

  23. Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12:30–39

    Article  MATH  Google Scholar 

  24. Goodwin BC, Trainor LEH (1985) Tip and whorl morphogenesis in Acetabularia by calcium-regulated strain fields. J Theor Biol 117:79–106

    Article  Google Scholar 

  25. Gray P, Scott SK (1983) Autocatalytic reactions in the isothermal, continuous stirred tank reactor: isolas and other forms of multistability. Chem Eng Sci 38(1):29–43

    Article  Google Scholar 

  26. Gray P, Scott SK (1984) Autocatalytic reactions in the isothermal, continuous stirred tank reactor: oscillations and the instabilities in the system \(A+2B\rightarrow 3B\), \(B\rightarrow X\). Chem Eng Sci 39(6):1087–1097

    Article  Google Scholar 

  27. Ilati M, Dehghan M (2015) Meshless local weak form method based on a combined basis function for numerical investigation of Brusselator model and spike dynamics in the Gierer-Meinhardt system. Comput Model Eng Sci (CMES) 109(4):325–360

    Google Scholar 

  28. Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Comp 37:141–158

    Article  MathSciNet  MATH  Google Scholar 

  29. Lengyel I, Epstein IR (1991) Modeling of Turing structures in the chlorite-iodidemalonic acid-starch reaction system. Science 251:650–652

    Article  Google Scholar 

  30. Li DM, Bai FN, Cheng YM, Liew KM (2012) A novel complex variable element-free Galerkin method for two-dimensional large deformation problems. Comp Meth Appl Mech Eng 233–236:1–10

    MathSciNet  MATH  Google Scholar 

  31. Liew KM, Feng C, Cheng YM, Kitipornchai S (2007) Complex variable moving least-squares method: a meshless approximation technique. Int J Numer Meth Eng 70:46–70

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, Berlin

    Google Scholar 

  33. Mazzia A, Pini G, Sartoretto F (2012) Numerical investigation on direct MLPG for 2D and 3D potential problems. Comput Model Eng Sci (CMES) 88:183–210

    MathSciNet  Google Scholar 

  34. Mazzia A, Pini G, Sartoretto F (2014) MLPG refinement techniques for 2D and 3D diffusion problems. Comput Model Eng Sci (CMES) 102:475–497

    MathSciNet  Google Scholar 

  35. Medvedinskii AB, Rusakov AV, Moskalenko AV, Fedorov MV, Panfilov AV (2003) The study of autowave mechanisms of electrocardiogram variability during high frequency arrhythmias: mathematical modeling data. Biofizika 48:314–323

    Google Scholar 

  36. Mirzaei D (2015) A new low-cost meshfree method for two and three dimensional problems in elasticity. Appl Math Model 39:7181–7196

    Article  MathSciNet  Google Scholar 

  37. Mirzaei D, Hasanpour K (2016) Direct meshless local Petrov–Galerkin method for elastodynamic analysis. Acta Mech 227:619–632

    Article  MathSciNet  MATH  Google Scholar 

  38. Mirzaei D, Schaback R (2013) Direct meshless local Petrov–Galerkin (DMLPG) method: a generalized MLS approximation. Appl Num Math 68:73–82

    Article  MathSciNet  MATH  Google Scholar 

  39. Mirzaei D, Schaback R (2014) Solving heat conduction problems by the direct meshless local Petrov–Galerkin (DMLPG) method. Num Algorithms 65:275–291

    Article  MathSciNet  MATH  Google Scholar 

  40. Mirzaei D, Schaback R, Dehghan M (2012) On generalized moving least squares and diffuse derivatives. IMA J Numer Anal 32:983–1000

    Article  MathSciNet  MATH  Google Scholar 

  41. Murray JD (1993) Mathematical biology. Springer, Heidelberg, New York

    Book  MATH  Google Scholar 

  42. Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc IRE 50:2061–2070

    Article  Google Scholar 

  43. Pavel’chak IA (2011) A numerical method for determining the localized initial condition in the FitzHugh–Nagumo and Aliev–Panfilov models. Mosc Univ Comput Math Cybern 35:105–112

    Article  MathSciNet  MATH  Google Scholar 

  44. Prigogine I, Lefever R (1968) Symmetry breaking instabilities in dissipative systems II. J Chem Phys 48:1665–1700

    Article  Google Scholar 

  45. Ramezani M, Mojtabaei M, Mirzaei D (2015) DMLPG solution of the fractional advection–diffusion problem. Eng Anal Bound Elem 59:36–42

    Article  MathSciNet  Google Scholar 

  46. Ruuth SJ (1995) Implicit–explicit methods for reaction–diffusion problems in pattern formation. J Math Biol 34:148–176

    Article  MathSciNet  MATH  Google Scholar 

  47. Sartoretto F, Mazzia A, Pini G (2014) The DMLPG meshless technique for Poisson problems. Appl Math Sci 8:8233–8250

    Article  Google Scholar 

  48. Schnakenberg J (1979) Simple chemical reaction systems with limit cycle behavior. J Theor Biol 81:389–400

    Article  MathSciNet  Google Scholar 

  49. Sel’kov EE (1968) Self-oscillations in glycolysis. Eur J Biochem 4:79–86

    Article  Google Scholar 

  50. Shakeri F, Dehghan M (2011) The finite volume spectral element method to solve Turing models in the biological pattern formation. Comput Math Appl 62:4322–4336

    Article  MathSciNet  MATH  Google Scholar 

  51. Shirzadi A, Sladek V, Sladek J (2013) A local integral equation formulation to solve coupled nonlinear reaction–diffusion equations by using moving least square approximation. Eng Anal Bound Elem 37:8–14

    Article  MathSciNet  MATH  Google Scholar 

  52. Shirzadi A, Ling L, Abbasbandy S (2012) Meshless simulations of the two-dimensional fractional-time convection-diffusion-reaction equations. Eng Anal Bound Elem 36:1522–1527

    Article  MathSciNet  MATH  Google Scholar 

  53. Shivanian E (2015) Meshless local Petrov–Galerkin (MLPG) method for three-dimensional nonlinear wave equations via moving least squares approximation. Eng Anal Bound Elem 50:249–257

    Article  MathSciNet  Google Scholar 

  54. Shivanian E, Abbasbandy S, Alhuthali MS, Alsulami H (2015) Local integration of 2-D fractional telegraph equation via moving least squares approximation. Eng Anal Bound Elem 56:98–105

    Article  MathSciNet  Google Scholar 

  55. Shivanian E (2016) Local integration of population dynamics via moving least squares approximation. Eng Comput 32:331–342

    Article  Google Scholar 

  56. Sladek V, Sladek J, Shirzadi A (2015) The local integral equation method for pattern formation simulations in reaction–diffusion systems. Eng Anal Bound Elem 50:329–340

    Article  MathSciNet  MATH  Google Scholar 

  57. Sundnes J, Lines GT, Cai X, Nielsen BF, Mardal K-A, Tveito A (2006) Comput Electr Act Heart. Springer Verlag, New York

    MATH  Google Scholar 

  58. Taleei A, Dehghan M (2014) Direct meshless local Petrov–Galerkin method for elliptic interface problems with applications in electrostatic and elastostatic. Comput Methods Appl Mech Eng 278:479–498

    Article  MathSciNet  Google Scholar 

  59. Tatari M, Kamranian M, Dehghan M (2011) The finite point method for reaction–diffusion systems in developmental biology. Comput Model Eng Sci (CMES) 82:1–27

    MathSciNet  MATH  Google Scholar 

  60. Thomas D (1975) Artificial enzyme membrane, transport, memory and oscillatory phenomena. In: Thomas D, Kervenez J-P (eds) Analysis and control of Immobilised enzyme systems. Springer, Berlin, pp 115–150

    Google Scholar 

  61. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B 237:37–72

    Article  MathSciNet  Google Scholar 

  62. Wang Q, Dai B, Li Z (2013) A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems. Chin Phys B 22(8):080203–080207

    Article  Google Scholar 

  63. Walgraef D, Dewel G, Borckmans P (1980) Fluctuations near non-equilibrium phase transitions to non-uniform states. Phys Rev A 21:397–404

    Article  Google Scholar 

  64. Wazwaz AM (2009) Partial differential equations and solitary waves theory. Higher Education Press and Springer

  65. Wei D, Zhang W, Wang L, Dai B (2015) The complex variable meshless local Petrov-Galerkin method for elasticity problems of functionally graded materials. Appl Math Comput 268:1140–1151

    MathSciNet  Google Scholar 

  66. Zhang K, Wong JCF, Zhang R (2008) Second-order implicit–explicit scheme for the Gray–Scott model. J Comput Appl Math 213:559–581

    Article  MathSciNet  MATH  Google Scholar 

  67. Zhang R, Yu X, Zhu J, Loula AFD (2014) Direct discontinuous Galerkin method for nonlinear reaction–diffusion systems in pattern formation. Appl Math Model 38:1612–1621

    Article  MathSciNet  Google Scholar 

  68. Zhang T, He Y, Dong L, Li S, Alotaibi A, Atluri SN (2014) Meshless local Petrov–Galerkin mixed collocation method for solving Cauchy inverse problems of steady-state heat transfer. Comput Model Eng Sci (CMES) 97:509–553

    MathSciNet  Google Scholar 

  69. Zhu J, Zhang Y-T, Newman SA, Alber M (2009) Application of discontinuous Galerkin methods for reaction–diffusion systems in developmental biology. J Sci Comput 40:391–418

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank both reviewers for their useful comments and suggestions that improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Dehghan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilati, M., Dehghan, M. Application of direct meshless local Petrov–Galerkin (DMLPG) method for some Turing-type models. Engineering with Computers 33, 107–124 (2017). https://doi.org/10.1007/s00366-016-0458-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-016-0458-x

Keywords

Mathematics Subject Classification

Navigation