Skip to main content

Advertisement

Log in

Multiobjective scatter search for a commercial territory design problem

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, a multiobjective scatter search procedure for a bi-objective territory design problem is proposed. A territory design problem consists of partitioning a set of basic units into larger groups that are suitable with respect to some specific planning criteria. These groups must be compact, connected, and balanced with respect to the number of customers and sales volume. The bi-objective commercial territory design problem belongs to the class of NP-hard problems. Previous work showed that large instances of the problem addressed in this work are practically intractable even for the single-objective version. Therefore, the use of heuristic methods is the best alternative for obtaining approximate efficient solutions for relatively large instances. The proposed scatter search-based framework contains a diversification generation module based on a greedy randomized adaptive search procedure, an improvement module based on a relinked local search strategy, and a combination module based on a solution to an assignment problem.

The proposed metaheuristic is evaluated over a variety of instances taken from literature. This includes a comparison with two of the most successful multiobjective heuristics from literature such as the Scatter Tabu Search Procedure for Multiobjective Optimization (SSPMO) by Molina et al. (INFORMS J. Comput. 19(1):91–100, 2007), and the Non-dominated Sorting Genetic Algorithm (NSGA-II) by Deb et al. (Parallel problem solving from nature – PPSN VI, Lecture notes in computer science, vol. 1917, Springer, Berlin, pp. 849–858, 2000). Experimental work reveals that the proposed procedure consistently outperforms both heuristics, SSPMO and NSGA-II, on all instances tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Function 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bong, C. W., & Wang, Y. C. (2004). A multiobjective hybrid metaheuristic approach for GIS-based spatial zone model. Journal of Mathematical Modelling and Algorithms, 3(3), 245–261.

    Article  Google Scholar 

  • Bowerman, R., Hall, B., & Calamai, P. (1995). A multi-objective optimization approach to urban school bus routing: Formulation and solution method. Transportation Research Part A, 29(2), 107–123.

    Google Scholar 

  • Caballero, R., Gandibleux, X., & Molina, J. (2004). MOAMP: A generic multiobjective metaheuristic using an adaptive memory. Technical report, University of Valenciennes, Valenciennes, France.

  • Caballero-Hernández, S. I., Ríos-Mercado, R. Z., López, F., & Schaeffer, E. (2007). Empirical evaluation of a metaheuristic for commercial territory design with joint assignment constraints. In J. E. Fernandez, S. Noriega, A. Mital, S. E. Butt, & T. K. Fredericks (Eds.), Proceedings of the 12th annual international conference on industrial engineering theory, applications, and practice (IJIE), Cancun, Mexico (pp. 422–427). ISBN: 978-0-9654506-3-8.

    Google Scholar 

  • Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elistist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, & H. P. Schwefel (Eds.), Parallel problem solving from nature—PPSN VI. Lecture notes in computer science (Vol. 1917, pp. 849–858). Berlin: Springer.

    Chapter  Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., & Meyerivan, T. (2002). A fast elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  • Duque, J. C., Ramos, R., & Suriñach, J. (2007). Supervised regionalization methods: A survey. International Regional Science Review, 30(3), 195–220.

    Article  Google Scholar 

  • Glover, F. (1977). Heuristics for integer programming using surrogate constraints. Decision Sciences, 8(1), 156–166.

    Article  Google Scholar 

  • Grilli Di Cortona, P., Manzi, C., Pennisi, A., Ricca, F., & Simeone, B. (1999). Evaluation and optimization of electoral systems. SIAM monographs on discrete mathematics and applications. Philadelphia: Society for Industrial and Applied Mathematics.

    Book  Google Scholar 

  • Guo, J., Trinidad, G., & Smith, N. (2000). MOZART: A multi-objective zoning and aggregation tool. In Proceedings of the Philippine Computing Science Congress (PCSC), Manila, Philippines (pp. 197–201).

    Google Scholar 

  • Kalcsics, J., Nickel, S., & Schröder, M. (2005). Toward a unified territorial design approach: Applications, algorithms, and GIS integration. TOP, 13(1), 1–56.

    Article  Google Scholar 

  • Laguna, M., & Martí, R. (2003). Scatter search: methodology and implementations in C. Boston: Kluwer.

    Book  Google Scholar 

  • Martí, R., Laguna, M., & Glover, F. (2006). Principles of scatter search. European Journal of Operational Research, 169(2), 359–372.

    Article  Google Scholar 

  • Molina, J., Martí, R., & Caballero, R. (2007). SSPMO: A scatter tabu search procedure for non-linear multiobjective optimization. INFORMS Journal on Computing, 19(1), 91–100.

    Article  Google Scholar 

  • Nygreen, B. (1988). European assembly constituencies for Wales—comparing of methods for solving a political districting problem. Mathematical Programming, 42(1–3), 159–169.

    Article  Google Scholar 

  • Ricca, F. (2004). A multicriteria districting heuristic for the aggregation of zones and its use in computing origin-destination matrices. Information Systems and Operational Research, 42(1), 61–77.

    Google Scholar 

  • Ricca, F., & Simeone, B. (2008). Local search algorithms for political districting. European Journal of Operational Research, 189(3), 1409–1426.

    Article  Google Scholar 

  • Ríos-Mercado, R. Z., & Fernández, E. (2009). A reactive GRASP for a commercial territory design problem with multiple balancing requirements. Computers & Operations Research, 36(3), 755–776.

    Article  Google Scholar 

  • Salazar-Aguilar, M. A., Ríos-Mercado, R. Z., & Cabrera-Ríos, M. (2011a). New models for commercial territory design. Networks & Spatial Economics, 11(3), 487–507.

    Article  Google Scholar 

  • Salazar-Aguilar, M. A., Ríos-Mercado, R. Z., & González-Velarde, J. L. (2011b). A bi-objective programming model for designing compact and balanced territories in commercial districting. Transportation Research Part C: Emerging Technologies, 19(5), 885–895.

    Article  Google Scholar 

  • Salazar-Aguilar, M. A., Ríos-Mercado, R. Z., & González-Velarde, J. L. (2011c). GRASP strategies for a bi-objective commercial territory design problem. Journal of Heuristics, doi:10.1007/s10732-011-9160-8.

    Google Scholar 

  • Scott, M. N., Cromley, R. G., & Cromley, E. K. (1996). Multi-objective analysis of school district regionalization alternatives in Connecticut. The Professional Geographer, 48(1), 1–14.

    Article  Google Scholar 

  • Silverman, B. W. (1986). Density estimation for statistics and data analysis. London: Chapman and Hall.

    Google Scholar 

  • Simeone, B. (1978). Optimal graph partitioning. In Atti delle Giornate di Lavoro AIRO, Urbino, Italy (pp. 57–73).

    Google Scholar 

  • Singh, C. (1987). Optimality conditions in multiobjective differentiable programming. Journal of Optimization Theory and Applications, 53(1), 115–123.

    Article  Google Scholar 

  • Tavares-Pereira, F., Figueira, J. R., Roy, B., & Mousseau, V. (2007). Multiple criteria districting problems: The public transportation network pricing system of the Paris region. Annals of Operations Research, 154(1), 69–92.

    Article  Google Scholar 

  • Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4), 257–271.

    Article  Google Scholar 

  • Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.

Download references

Acknowledgements

We are very grateful to the reviewers whose comments helped improve the presentation of this work. This work was supported by the Mexican National Council for Science and Technology under grants SEP-CONACYT 48499–Y and SEP-CONACYT 61903, Universidad Autónoma de Nuevo León under its Scientific and Technological Research Support, grant UANL-PAICYT CE012–09, by Tecnológico de Monterrey under research grant CAT128, and by the Spanish Ministerio de Ciencia e Innovación under project TIN2009-07869. The first author gently acknowledges a doctoral fellowship from Universidad Autónoma de Nuevo León, grant NL–2006–C09–32652.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Angélica Salazar-Aguilar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salazar-Aguilar, M.A., Ríos-Mercado, R.Z., González-Velarde, J.L. et al. Multiobjective scatter search for a commercial territory design problem. Ann Oper Res 199, 343–360 (2012). https://doi.org/10.1007/s10479-011-1045-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-011-1045-6

Keywords

Navigation