Skip to main content
Log in

The Existence and Concentration of Ground State Solutions for Chern-Simons-schrödinger Systems with a Steep Well Potential

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this paper, we investigate a class of nonlinear Chern-Simons-Schrödinger systems with a steep well potential. By using variational methods, the mountain pass theorem and Nehari manifold methods, we prove the existence of a ground state solution for λ > 0 large enough. Furthermore, we verify the asymptotic behavior of ground state solutions as λ → +∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartsch T, Wang Z Q. Existence and multiplicity results for some superlinear elliptic problems on ℝN. Comm Partial Differential Equations, 1995, 20(10): 1725–1741

    Article  MathSciNet  Google Scholar 

  2. Bartsch T, Wang Z Q. Multiple positive solutions for a nonlinear Schrödinger equation. Z Angew Math Phys, 2000, 51(3): 366–384

    Article  MathSciNet  Google Scholar 

  3. Bergé L, Bouard A D, Saut J C. Blowing up time-dependent solutions of the planar, Chern-Simons gauged nonlinear Schrödinger equation. Nonlinearity, 1995, 8(2): 235–253

    Article  MathSciNet  Google Scholar 

  4. Byeon J, Huh H, Seok J. Standing waves of nonlinear Schrödinger equations with the gauge field. J Funct Anal, 2012, 263(6): 1575–1608

    Article  MathSciNet  Google Scholar 

  5. Byeon J, Huh H, Seok J. On standing waves with a vortex point of order N for the nonlinear Chern-Simons-Schrödinger equations. J Differential Equations, 2016, 261(2): 1285–1316

    Article  MathSciNet  Google Scholar 

  6. Chen S T, Zhang B L, Tang X H. Existence and concentration of semiclassical ground state solutions for the generalized Chern-Simons-Schrödinger system in H1(ℝ2). Nonlinear Anal, 2019, 185: 68–96

    Article  MathSciNet  Google Scholar 

  7. Chen Z, Tang X H, Zhang J. Sign-changing multi-bump solutions for the Chern-Simons-Schrödinger equations in ℝ2. Adv Nonlinear Anal, 2019, 9(1): 1066–1091

    Article  Google Scholar 

  8. Cunha P L, D’Avenia P, Pomponio A, et al. A multiplicity result for Chern-Simons-Schrödinger equation with a general nonlinearity. Nonlinear Differential Equations Appl, 2015, 22(6): 1831–1850

    Article  MathSciNet  Google Scholar 

  9. Huh H. Standing waves of the Schrödinger equation coupled with the Chern-Simons gauge field. J Math Phys, 2012, 53 (6): 8pp

  10. Jackiw R, Pi S Y. Classical and quantal nonrelativistic Chern-Simons theory. Phys Rev, 1990, 42(10): 3500–3513

    MathSciNet  Google Scholar 

  11. Jackiw R, Pi S Y. Soliton solutions to the gauged nonlinear Schrödinger equation on the plane. Phys Rev Lett, 1990, 64(25): 2969–2972

    Article  MathSciNet  Google Scholar 

  12. Jackiw R, Pi S Y. Self-dual Chern-Simons solitons. Progr Theoret Phys Suppl, 1992, 107: 1–40

    Article  MathSciNet  Google Scholar 

  13. Jeanjean L. Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal, 1997, 28(10): 1633–1659

    Article  MathSciNet  Google Scholar 

  14. Jeanjean L. On the existence of bounded Palais-Smale sequences and application to Landesman-Lazer-type problem set on ℝN. Proc Roy Soc Edinburgh Sect A, 1999, 129(4): 787–809

    Article  MathSciNet  Google Scholar 

  15. Ji C, Fang F. Standing waves for the Chern-Simons-Schrödinger equation with critical exponential growth. J Math Anal Appl, 2017, 450(1): 578–591

    Article  MathSciNet  Google Scholar 

  16. Jiang Y S, Pomponio A, Ruiz D. Standing waves for a gauged nonlinear Schrödinger equation with a vortex point. Commun Contemp Math, 2016, 18 (4): Article ID 1550074 20pp

  17. Kang J C, Li Y Y, Tang C L. Sign-Changing solutions for Chern-Simons-Schrödinger equations with asymptotically 5-Linear nonlinearity. Bull Malays Math Sci Soc, 2021, 44(2): 711–731

    Article  MathSciNet  Google Scholar 

  18. Li G B, Luo X. Normalized solutions for the Chern-Simons-Schrödinger equation in ℝ2. Ann Acad Sci Fenn Math, 2017, 42(1): 405–428

    Article  MathSciNet  Google Scholar 

  19. Li G D, Li Y Y, Tang C L. Existence and concentrate behavior of positive solutions for Chern-Simons-Schrödinger systems with critical growth. Complex Var Elliptic Equ, 2021, 66(3): 476–486

    Article  MathSciNet  Google Scholar 

  20. Liu B, Simth P, Tataru D. Local wellposedness of Chern-Simons-Schrödinger. Int Math Res Not, 2014, 2014(23): 6341–6398

    Article  Google Scholar 

  21. Pankov A, Bartsch T, Wang Z Q. Nonlinear Schrödinger equations with steep potential well. Commun Contemp Math, 2001, 3(4): 549–569

    Article  MathSciNet  Google Scholar 

  22. Pomponio A, Ruiz D. Boundary concentration of a gauged nonlinear Schrödinger equation on large balls. Calc Var Partial Differential Equations, 2015, 53(1/8): 289–316

    Article  MathSciNet  Google Scholar 

  23. Pomponio A, Ruiz D. A variational analysis of a gauged nonlinear Schrödinger equation. J Eur Math Soc, 2015, 17(6): 1463–1486

    Article  MathSciNet  Google Scholar 

  24. Seok J. Infinitely many standing waves for the nonlinear Chern-Simons-Schrödinger equations. Adv Math Phys, 2015, 2015: 1–7

    Article  Google Scholar 

  25. Tang X H, Zhang J, Zhang W. Existence and concentration of solutions for the Chern-Simons-Schrödinger system with general nonlinearity. Results Math, 2017, 71(3/8): 643–655

    Article  MathSciNet  Google Scholar 

  26. Wan Y Y, Tan J G. Standing waves for the Chern-Simons-Schrödinger systems without (AR) condition. J Math Anal Appl, 2014, 415(1): 422–434

    Article  MathSciNet  Google Scholar 

  27. Wan Y Y, Tan J G. Concentration of semi-classical solutions to the Chern-Simons-Schrödinger systems. Nonlinear Differential Equations Appl, 2017, 24(3): 28

    Article  Google Scholar 

  28. Wan Y Y, Tan J G. The existence of nontrivial solutions to Chern-Simons-Schrödinger systems. Discrete Contin Dyn Syst, 2017, 37(5): 2765–2786

    Article  MathSciNet  Google Scholar 

  29. Weinstein M I. Nonlinear Schrödinger equations and sharp interpolation estimates. Comm Math Phys, 1983, 87(4): 567–576

    Article  Google Scholar 

  30. Willem M. Minimax theorems. Boston: Birkhäuser, 1996

    Book  Google Scholar 

  31. Xia A. Existence, nonexistence and multiplicity results of a Chern-Simons-Schrödinger system. Acta Appl Math, 2020, 166: 147–159

    Article  MathSciNet  Google Scholar 

  32. Xie W, Chen C. Sign-changing solutions for the nonlinear Chern-Simons-Schrödinger equations. Appl Anal, 2020, 99(5): 880–898

    Article  MathSciNet  Google Scholar 

  33. Yuan J. Multiple normalized solutions of Chern-Simons-Schrödinger system. Nonlinear Differential Equations Appl, 2015, 22(6): 1801–1816

    Article  MathSciNet  Google Scholar 

  34. Zhang N, et al. Ground state solutions for the Chern—Simons—Schrödinger equations with general nonlinearity. Complex Var Elliptic Equ, 2020, 65(8): 1394–1411

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlei Tang  (唐春雷).

Additional information

The third author was supported by National Natural Science Foundation of China (11971393).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, J., Li, Y. & Tang, C. The Existence and Concentration of Ground State Solutions for Chern-Simons-schrödinger Systems with a Steep Well Potential. Acta Math Sci 42, 1125–1140 (2022). https://doi.org/10.1007/s10473-022-0318-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-022-0318-2

Key words

2010 MR Subject Classification

Navigation