Skip to main content
Log in

Low Mach Number Limit of a Compressible Non-Isothermal Nematic Liquid Crystals Model

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this paper, we study the low Mach number limit of a compressible non-isothermal model for nematic liquid crystals in a bounded domain. We establish the uniform estimates with respect to the Mach number, and thus prove the convergence to the solution of the incompressible model for nematic liquid crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alazard T. Low Mach number limit of the full Navier-Stokes equations. Arch Ration Mech Anal, 2006, 180: 1–73

    Article  MathSciNet  MATH  Google Scholar 

  2. Bendali A, Dominguez J M, Gallic S. A variational approach for the vector potential formulation of the Stokes and Navier-Stokes problems in three dimensional domains. J Math Anal Appl, 1985, 107: 537–560

    Article  MathSciNet  MATH  Google Scholar 

  3. Bourguignon J, Brezis H. Remarks on the Euler equation. J Funct Anal, 1974, 15: 341–363

    Article  MathSciNet  MATH  Google Scholar 

  4. Chu Y, Liu X, Liu X. Strong solutions to the compressible liquid crystal system. Pacific J Math, 2012, 257: 37–52

    Article  MathSciNet  MATH  Google Scholar 

  5. Cui W, Ou Y, Ren D. Incompressible limit of full compressible magnetohydrodynamic equations with well-prepared data in 3-D bounded domains. J Math Anal Appl, 2015, 427: 263–288

    Article  MathSciNet  MATH  Google Scholar 

  6. Ding S, Huang J, Wen H, Zi R. Incompressible limit of the compressible nematic liquid crystal flow. J Funct Anal, 2013, 264: 1711–1756

    Article  MathSciNet  MATH  Google Scholar 

  7. Dou C, Jiang S, Ou Y. Low Mach number limit of full Navier-Stokes equations in a 3D bounded domain. J Differential Equations, 2015, 258: 379–398

    Article  MathSciNet  MATH  Google Scholar 

  8. Fan J, Li F, Nakamura G. Local well-posedness for a compressible non-isothermal model for nematic liquid crystals. J Math Phys, 2018, 59: 031503

    Article  MathSciNet  MATH  Google Scholar 

  9. Feireisl E, Fremond M, Rocca E, Schimperna G. A new approach to non-isothermal models for nematic liquid crystals. Arch Ration Mech Anal, 2012, 205: 651–672

    Article  MathSciNet  MATH  Google Scholar 

  10. Feireisl E, Rocca E, Shimperna G, On a non-isothermal model for nematic liquid crystals. Nonlinearity, 2011, 24: 243–257

    Article  MathSciNet  MATH  Google Scholar 

  11. Gu W, Fan J, Zhou Y. Regularity criteria for some simplified non-isothermal models for nematic liquid crystals. Comput Math Appl, 2016, 72: 2839–2853

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo B, Xi X, Xie B. Global well-posedness and decay of smooth solutions to the non-isothermal model for compressible nematic liquid crystals. J Differential Equations, 2017, 262: 1413–1460

    Article  MathSciNet  MATH  Google Scholar 

  13. Guo B, Xie B, Xi X. On a compressible non-isothermal model for nematic liquid crystals. arXiv:1603.03976

  14. Huang T, Wang C, Wen H. Strong solutions of the compressible nematic liquid crystal flow. J Differential Equations, 2012, 252: 2222–2265

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang T, Wang C, Wen H. Blow up criterion for compressible nematic liquid crystal flows in dimension three. Arch Ration Mech Anal, 2012, 204: 285–311

    Article  MathSciNet  MATH  Google Scholar 

  16. Jiang F, Jiang S, Wang D. On multi-dimensional compressible flow of nematic liquid crystals with large initial energy in a bounded domain. J Funct Anal, 2013, 265: 3369–3397

    Article  MathSciNet  MATH  Google Scholar 

  17. Jiang F, Jiang S, Wang D. Global weak solutions to the equations of compressible flow of nematic liquid crystals in two dimensions. Arch Ration Mech Anal, 2014, 214: 403-451

    Article  MathSciNet  MATH  Google Scholar 

  18. Klainerman S, Majda A. Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm Pure Appl Math, 1981, 34: 481–524

    Article  MathSciNet  MATH  Google Scholar 

  19. Li J, Xin Z. Global existence of weak solutions to the non-isothermal nematic liquid crystuls in 2D. Acta Math Sci, 2016, 36B(3): 973–1014

    Article  MathSciNet  MATH  Google Scholar 

  20. Li X, Guo B. Well-posedness for the three-dimensional compressible liquid crystal flows. Discrete Contin Dyn Syst Ser S, 2016, 9: 1913–1937

    Article  MathSciNet  MATH  Google Scholar 

  21. Lin F, Wang C. Recent developments of analysis for hydrodynamic flow of nematic liquid crystals. Philos Trans R Soc Lond Ser A Math Phys Eng Sci, 2014, 372: 20130361, 18pp

    Article  MathSciNet  MATH  Google Scholar 

  22. Lions P L. Mathematical Topics in Fluid Mechanics Vol 2: Compressible Models. New York: Oxford University Press, 1998

    MATH  Google Scholar 

  23. Metivier G, Schochet S. The incompressible limit of the non-isentropic Euler equations. Arch Ration Mech Anal, 2001, 158: 61–90

    Article  MathSciNet  MATH  Google Scholar 

  24. Qi G, Xu J. The low Mach number limit for the compressible flow of liquid crystals. Appl Math Comput, 2017, 297: 39–49

    MathSciNet  Google Scholar 

  25. Schochet S. The mathematical theory of the incompressible limit in fluid dynamics//Handbook of Mathematical Fluid Dynamics, Vol IV. Amsterdam: Elsevier/North-Holland, 2007: 123–157

    Google Scholar 

  26. Xiao Y, Xin Z P. On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition. Comm Pure Appl Math, 2007, 60: 1027–1055

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang X. Uniform well-posedness and low Mach number limit to the compressible nematic liquid flows in a bounded domain. Nonlinear Anal, 2015, 120: 118–126

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fucai Li.

Additional information

Fan was supported by NSFC (11171154). Li was sup-ported in part by by NSFC (11671193), and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, J., Li, F. Low Mach Number Limit of a Compressible Non-Isothermal Nematic Liquid Crystals Model. Acta Math Sci 39, 449–460 (2019). https://doi.org/10.1007/s10473-019-0210-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-019-0210-x

Key words

2010 MR Subject Classification

Navigation