Skip to main content
Log in

A MOS translinear cell-based configurable block for current-mode analog signal processing

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper, proposes a low-voltage/power, high-speed configurable analog block (CAB) for current-mode nonlinear computation. A novel MOS translinear cell (MTC), two local switch networks and PMOS-NMOS arrays are the basic building blocks of the proposed CAB. This MTC consists of two overlapped translinear loops using the MOS transistors operating in weak inversion region. The proposed CAB is capable to implement such current-mode analog computational processors as one- and four-quadrant multipliers, one- and two-quadrant dividers, squarer, full-wave rectifier (absolute-value), RMS to DC converter and much other. Post-layout plus Monte Carlo simulations of the proposed design with 0.18 µm (level-49 parameters) TSMC technology is performed that prove its superiority over some other advanced works and robustness against process, voltage and temperature variations. This superb feature plus many others, mostly, are due to the precise multilateral analysis and optimal compensate of mismatches and second order effects of the proposed circuit that led to proper selection of devices sizes and deliberate arrangement of the layout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Vittoz, E. A. (1994). Analog VLSI signal processing: Why, where, and how? Journal of VLSI Signal Processing, 8(1), 27–44.

    Article  Google Scholar 

  2. Chang, C.-C., & Liu, S.-I. (2000). Current-mode full-wave rectifier and vector summation circuit. Electronics Letter, 36(19), 1599–1600.

    Article  Google Scholar 

  3. Tanno, K., Ishizuka, O., & Tang, Z. (2000). Four-quadrant CMOS current-mode multiplier independent of device parameters. IEEE Transactions Circuits and Systems-II, 47(5), 473–477.

    Article  Google Scholar 

  4. Lopez-Martin, A. J., & Carlosena, A. (2001). Current-mode multiplier/divider circuits based on the MOS translinear principle. Analog Integrated Circuits and Signal Processing, 28(3), 265–278.

    Article  Google Scholar 

  5. Gravati, M., Valle, M., Ferri, G., Guerrini, N., & Reyes, L. (2005). A novel current-mode very low power analog CMOS four quadrant multiplier. In Proceedings of ESSCIRC, France (pp. 495–498).

  6. Mahmoudi, A., Khoei, A., & Hadidi, Kh. (2007). A novel current-mode micro power four quadrant CMOS analog multiplier/divider. In IEEE conference on electron devices & solid-state circuits (EDSSC) (pp. 321–324).

  7. Tanno, K., Sugahara, Y., & Tamura, H. (2011). High-linear four-quadrant multiplier based on MOS weak-inversion region translinear principle with adaptive bias technique. In TENCON (pp. 680–684).

  8. Al-Absi, M. A., Hussein, A., & Abuelma’atti, M. T. (2012). A novel current-mode ultra low power analog CMOS four quadrant multiplier. In Proceedings of international conference on computer and communication engineering (pp. 13–17).

  9. Wu, R., & Xing, J. (2012). MOS translinear principle based analog four-quadrant multiplier. In Anti-counterfeiting security and identification (ASID) (pp. 1–4).

  10. Demartinos, Ch., Psychalinosand, C., & Khateb, F. (2014). Ultra-low voltage CMOS current-mode four-quadrant multiplier. International Journal of Electronics Letters, 2(4), 224–233.

    Article  Google Scholar 

  11. Minaei, Sh, & Yuce, E. (2010). New squarer circuits and a current-mode full-wave rectifier topology suitable for integration. Radioengineering, 19(4), 657–661.

    Google Scholar 

  12. Chaisayun, I., Piangprantong, S., & Dejhan, K. (2012). Versatile analog squarer and multiplier free from body effect. Analog Integrated Circuits and Signal Processing, 71(3), 539–547.

    Article  Google Scholar 

  13. Farshidi, E., & Ghanavati Nejad, T. (2012). A new two-quadrant squarer/divider circuit for true RMS-to-DC converters in MOS technology. Measurement, 45(4), 778–784.

    Article  Google Scholar 

  14. Shaterian, M., Twigg, C. M., & Azhari, S. J. (2015). MTL-based implementation of current-mode CMOS RMS-to-DC converters. International Journal of Circuit Theory and Applications, 43(6), 793–805.

    Article  Google Scholar 

  15. Al-Absi, M. A., & As-Sabban, I. A. (2014). A CMOS current-mode squaring circuit free of error resulting from carrier mobility reduction. Analog Integrated Circuits and Signal Processing, 81(1), 21–28.

    Article  Google Scholar 

  16. Beyraghi, N., Khoei, A., & Hadidi, Kh. (2014). CMOS design of a four-quadrant multiplier based on a novel squarer circuit. Analog Integrated Circuits and Signal Processing, 80(3), 473–481.

    Article  Google Scholar 

  17. Popa, C. (2014). Improved accuracy current-mode multiplier circuits with applications in analog signal processing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(2), 443–447.

    Article  Google Scholar 

  18. Moradinezhad Maryan, M., Azhari, S. J., & Hajipur, M. R. (2016). A simple low-power high-speed CMOS four-quadrant current multiplier. In Proceedings of 24th Iranian conference on electrical engineering (ICEE) (pp. 1471–1474).

  19. Baturone, I., Huertas, J. L., Barriga, A., & Sanchez-Solano, S. (1995). Extending the functionality of a flexible current-mode CMOS circuit. Electronics Letter, 31(15), 1231–1232.

    Article  Google Scholar 

  20. Abuelma’atti, M. T., & Al-Absi, M. A. (2006). A CMOS analog cell and its applications in analog signal processing. International Journal of Electronics, 93(4), 251–267.

    Article  Google Scholar 

  21. Seon, J.-K. (2008). Design and application of precise analog computational circuits. Analog Integrated Circuits and Signal Processing, 54(1), 55–66.

    Article  Google Scholar 

  22. Sajjadi-Kia, H. (2011). An analog cell and its applications in analog signal processing. International Journal of Circuit Theory and Applications, 39(2), 195–201.

    Article  Google Scholar 

  23. Al-Absi, M. A., Hussein, A., & Abuelma’atti, M. T. (2013). A low voltage and low power current-mode analog computational circuit. Circuits, Systems and Signal Processing, 32(1), 321–331.

    Article  MathSciNet  Google Scholar 

  24. Srivastava, R., Gupta, M., & Singh, U. (2015). Low-voltage FGMOS squarer/divider-based analog building blocks. International Journal of Electronics, 102(4), 563–581.

    Article  Google Scholar 

  25. Abuelma’atti, M. T., & Al-Yahia, N. M. (2008). An improved universal CMOS current-mode analogue function synthesizer. International Journal of Electronics, 95(11), 1127–1148.

    Article  Google Scholar 

  26. Karimi, Y., & Abrishamifar, A. (2011). A low power configurable analogue block. In Proceedings of 19th Iranian conference on electrical engineering (ICEE) (pp. 1–5).

  27. Fernandez, D., Martinez-Alvarado, L., & Madrenas, J. (2012). A translinear, log-domain FPAA on standard CMOS technology. IEEE Journal of Solid-State Circuits, 47(2), 490–503.

    Article  Google Scholar 

  28. Schlottmann, C., Abramson, D., & Hasler, P. (2012). A MITE-based translinear FPAA. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20(1), 1–9.

    Article  Google Scholar 

  29. Shaterian, M., Twigg, C. M., & Azhari, S. J. (2013). An MTL-based configurable block for current-mode nonlinear analog computation. IEEE Transactions Circuits and Systems-II, 60(9), 587–591.

    Article  Google Scholar 

  30. Toumazou, C., Lidgey, F. J., & Haigh, D. G. (1990). Analogue IC design: The current-mode approach. London: IEE Press.

    Google Scholar 

  31. Seevinck, E., Vittoz, E. A., du Plessis, M., Joubert, T.-H., & Beetge, W. (2000). CMOS translinear circuits for minimum supply voltage. IEEE Transactions Circuits and Systems-II, 47(12), 1560–1564.

    Article  Google Scholar 

  32. Seevinck, E., & Wiegerink, R. J. (1991). Generalized translinear circuit principle. IEEE Journal of Solid-State Circuits, 26(8), 1098–1102.

    Article  Google Scholar 

  33. Andreou, A. G., & Boahen, K. A. (1996). Translinear circuits in subthreshold MOS. Analog Integrated Circuits and Signal Processing, 9(2), 141–166.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Javad Azhari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maryan, M.M., Azhari, S.J. A MOS translinear cell-based configurable block for current-mode analog signal processing. Analog Integr Circ Sig Process 92, 1–13 (2017). https://doi.org/10.1007/s10470-017-0959-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-017-0959-6

Keywords

Navigation