Skip to main content

Advertisement

Log in

Abstract

Analog VLSI signal processing is most effective when precision is not required, and is therefore an ideal solution for the implementation of perception systems. The possibility to choose the physical variable that represents each signal allows all the features of the transistor to be exploited opportunistically to implement very dense time- and amplitude-continuous processing cells. This paper describes a simple model that captures all the essential features of the transistor. This symmetrical model also supports the concept of pseudoconductance which facilitates the implementation of linear networks of transistors. Basic combinations of transistors in the current mirror, the differential pair, and the translinear loop are revisited as support material for the description of a variety of building blocks. These examples illustrate the rich catalogue of linear and nonlinear operators that are available for local and collective analog processing. The difficult problem of analog storage is addressed briefly, as well as various means for implementing the necessary intrachip and interchip communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Workshop on Future Directions in Circuits, Systems, and Signal Processing, May 4–5, 1990, New Orleans, LA.

  2. E. Vittoz, “Future trends of analog in the VLSI environment,” invited session WEAM-9,ISCAS'90, New Orleans, 1990.

  3. T. Yamakawa and T. Miki, “The current mode fuzzy logic integrated circuit fabrication by the standard CMOS process,”IEEE Trans. Comput., Vol. C-35, pp. 161–167, 1986.

    Article  Google Scholar 

  4. O. Landolt, “Efficient analog CMOS implementation of fuzzy rules by direct synthesis of multidimensional fuzzy subspaces,” submitted toFuzz'IEEE '93, San Francisco.

  5. E. Vittoz, “The design of high-performance analog circuits on digital CMOS chips,”IEEE J. Solid-State Circuits, Vol. SC-20, pp. 657–665, 1985.

    Article  Google Scholar 

  6. E. Vittoz, “Micropower Techniques,” inDesign of VLSI Circuits for Telecommunication and Signal Processing (J. Franca and Y. Tsividis, eds.), Prentice Hall: Englewood Cliffs, NJ, 1994.

    Google Scholar 

  7. Y.P. Tsividis,Operation and Modeling of the MOS Transistor, McGraw-Hill: New York, 1987.

    Google Scholar 

  8. E. Vittoz and J. Fellrath, “CMOS analog integrated circuits based on weak inversion operation,”IEEE J. Solid-State Circuits, Vol. SC-12, pp. 224–231, 1977.

    Article  Google Scholar 

  9. E. Vittoz, “MOS transistors operated in the lateral bipolar mode and their applications in CMOS technology,”IEEE J. Solid-State Circuits, Vol. SC-18, pp. 273–279, 1983.

    Article  Google Scholar 

  10. J.B. Hughes, “Switched current filters,” inAnalog IC Design: The Current-Mode Approach (C. Toumazou, F.J. Lidgey and D.G. Haigh, eds.), Peter Peregrinus: London, 1990.

    Google Scholar 

  11. E. Vittoz, “Dynamic Analog Techniques,” inDesign of VLSI Circuits for Telecommunication and Signal Processing (J. Franca and Y. Tsividis, eds.), Prentice Hall: Englewood Cliffs, NJ, 1994.

    Google Scholar 

  12. E. Vittoz and G. Wegmann, “Dynamic current mirrors,” inAnalog IC Design: The Current-Mode Approach (C. Toumazou, F. Lidgey, and D. Haigh, eds.), Peter Peregrinus: London, 1990.

    Google Scholar 

  13. B. Gilbert, “Translinear circuits: a proposed classification,”Electron. Lett., Vol. 11, p. 14, 1975.

    Article  Google Scholar 

  14. G.C. Temes,Integrated Analog Filters, IEEE Press, 1987.

  15. R. Schaumann and M.A. Tan, “Continuous-time filters,” inAnalog IC Design: The Current-Mode Approach (C. Toumazou, F. Lidgey, and D. Haigh, eds.), Peter Peregrinus: London, 1990.

    Google Scholar 

  16. E. Vittoz, “Analog VLSI implementation of neural networks,” inProc. Journées d'Electronique EPFL on Artificial Neural Nets, EPF-Lausanne, pp. 224–250, 1989.

  17. K. Bult and H. Wallinga, “A class of analog CMOS circuits based on the square-law characteristic of an MOS transistor in saturation,”IEEE J. Solid-State Circuits, Vol. SC-22, No. 3, pp. 357–365, 1987.

    Article  Google Scholar 

  18. O. Landolt, E. Vittoz, and P. Heim, “CMOS selfbiased euclidean distance computing circuit with high dynamic range,”Electron. Lett., Vol. 28, No. 4, 1992.

  19. M. Degrauwe, J. Rijmenants, E. Vittoz, and H. De Man, “Adaptive biasing CMOS amplifiers,”IEEE J. Solid-State Circuits, Vol. SC-17, pp. 522–528, 1982.

    Article  Google Scholar 

  20. E. Vittoz and X. Arreguit, “CMOS integration of Hérault-Jutten cells for separation of sources,” inAnalog VLSI Implementation of Neural Networks, (C. Mead and M. Ismail, eds.), Kluwer: Boston, 1989.

    Google Scholar 

  21. X. Arreguit, E. Vittoz, and M. Merz, “Precision compressor gain controller in CMOS technology,”IEEE J. Solid-State Circuits, Vol. SC-22, pp. 442–445, 1987.

    Article  Google Scholar 

  22. E. Vittoz, H. Oguey, M.A. Maher, O. Nys, E. Dijkstra, and M. Chevroulet, “Analog storage of adjustable synaptic weights,” inIntroduction to VLSI-Design of Neural Networks (U. Ramacher, ed.) Kluwer: Boston, 1991.

    Google Scholar 

  23. O. Landolt, “An analog CMOS implementation of a Kohonen network with learning capability,”3rd Int. Workshop on VLSI for Neural Networks and Artificial Intelligence, Oxford, 1992.

  24. M. Lenzlinger and E. Snow, “Fowler-Nordheim tunneling into thermally grown SiO2,”J. Appl. Phys., Vol. 40, p. 278, 1969.

    Article  Google Scholar 

  25. E. Säckinger and W. Guggenbühl, “An analog trimming circuit based on a floating-gate device,”IEEE J. Solid-State Circuits, Vol. SC-23, No. 6, pp. 1437–1440, 1988.

    Article  Google Scholar 

  26. M. Holler et al., “An electrically trainable artificial neural network (ETANN) with 10240 floating gate synapses,” inProc. Int. Joint Conf. on Neural Networks, Washington, pp. II-191–II-196, 1989.

  27. B. Gilbert, “A monolithic 16-channel analog array normalizer,”IEEE J. Solid-State Circuits, Vol. SC-19, p. 956, 1984.

    Article  Google Scholar 

  28. J. Lazzaro et al., “Winner-take-all networks of orderN complexity,” inProc. 1988 IEEE Conf. on Neural Information Processing—Natural and Synthetic, Denver, 1988.

  29. C.A. Mead,Analog VLSI and Neural Systems, Addison-Wesley: Reading, MA, 1989.

    Book  MATH  Google Scholar 

  30. S. DeWeerth and C.A. Mead, “A two-dimensional visual tracking array,” inProc. 1988 M.I.T. Conf. on VLSI, M.I.T. Press: Cambridge, MA, pp. 259–275.

  31. C.A. Mead and M.A. Mahowald, “A silicon model of early visual processing,”Neural Networks, Vol. 1, pp. 91–97, 1988.

    Article  Google Scholar 

  32. D. Standley and B. Horn, “Analog CMOS IC for object position and orientation,” SPIE vol. 1473,Visual Information Processing: From Neurons to Chips, pp. 194–201, 1991.

    Google Scholar 

  33. L. Tarassenko et al., “Real-time autonomous robot navigation using VLSI neural networks,” inAdvances in Neural Information Processing Systems, Vol. 3, (R.P. Lippmann, J.E. Moody, and D.S. Touretzky, (eds.), Morgan Kaufmann: pp. 422–428, 1991.

  34. E. Vittoz et al., “Analog VLSI implementation of a Kohonen map,” inProc. Journées d'Electronique on Artificial Neural Nets, EPFL, Lausanne, pp. 292–301, 1989.

    Google Scholar 

  35. P. Heim, B. Hochet, and E. Vittoz, “Generation of learning neighborhood in Kohonen feature maps by means if simple nonlinear network,”Electron. Lett., Vol. 27, No. 3, pp. 275–277, 1991.

    Article  Google Scholar 

  36. J. Tanner and C.A. Mead, “A correlating optical motion detector,” inProc. Conf. on Advanced Research in VLSI, MIT, Cambridge, MA, 1984.

    Google Scholar 

  37. L. Chua and L. Yang, “Cellular neural networks: theory,”IEEE Trans. Circuits Systems, Vol. 35, pp. 1257–1272, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  38. L. Chua and L. Yang, “Cellular neural networks: applications,”IEEE Trans. Circuits Systems, Vol. 35, pp. 1273–1290, 1988.

    Article  MathSciNet  Google Scholar 

  39. C.A. Mead and T. Delbrück, “Scanners for visualizing activity of analog VLSI circuitry,” CNS Memo 11, California Institute of Technology, 1991.

  40. M. Mahowald,VLSI Analogs of Neuronal Visual Processing: A Synthesis of Form and Function, Ph.D. thesis, California Institute of Technology, Pasadena, 1992.

    Google Scholar 

  41. A. Mortara and E. Vittoz, “A communication architecture tailored for analog VLSI artificial neural networks: intrinsic performance and limitations,”IEEE Trans. Neural Networks, submitted.

  42. E. Vittoz and X. Arreguit, “Linear networks based on transistors,”Electron. Lett., Vol. 29, pp. 297–299, 1993.

    Article  Google Scholar 

  43. K.W. Boahen and A.G Andreou, “A contrast sensitive silicon retina with reciprocal synapses,” inAdvances in Neural Information Processing Systems, Vol. 4, Morgan Kaufmann: San Mateo, CA, pp. 764–772, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vittoz, E.A. Analog VLSI signal processing: Why, where, and how?. Journal of VLSI Signal Processing 8, 27–44 (1994). https://doi.org/10.1007/BF02407108

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02407108

Keywords

Navigation