Skip to main content
Log in

Transplantation of sendai viral angiopoietin-1-modified mesenchymal stem cells for ischemic limb disease

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Sendai viral vector (SeV) is emerging as a promising vector for gene therapy. However, little information is available regarding the combination of SeV-mediated gene and mesenchymal stem cell (MSC) therapy in dealing with ischemic diseases. In this study, we infected SeV to the MSCs in vitro; and injected MSCs modified with SeV harboring human angiopoietin-1 gene (SeVhAng-1) into the ischemic limb of rats in vivo. We found SeV had high transductive efficiency to the MSCs. Both MSCs and SeVhAng-1-modified MSCs improved the blood flow recovery and increased the capillary density of the ischemic limb, compared with the control. However, in contrast to MSCs, SeVhAng-1-modified MSCs had a better improvement of blood flow recovery in the ischemic limb. We further found the ischemic limb injected with SeVhAng-1-modified MSCs had strong expression of p-Akt, which improved survival of MSCs injected into the ischemic limb. This indicated SeVhAng-1 modification enhanced angiogenetic effect of MSCs by both angiogenesis and cell protection. We conclude that SeVhAng-1-modified MSCs may serve as a more effective tool in dealing with ischemic limb disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nagaya N, Kangawa K, Itoh T et al (2005) Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 112:1128–1135

    Article  PubMed  Google Scholar 

  2. Kinnaird T, Stabile E, Burnett MS et al (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109:1543–1549

    Article  CAS  PubMed  Google Scholar 

  3. Kinnaird T, Stabile E, Burnett MS et al (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94:678–685

    Article  CAS  PubMed  Google Scholar 

  4. Silva GV, Litovsky S, Assad JA et al (2005) Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111:150–156

    Article  CAS  PubMed  Google Scholar 

  5. Toma C, Pittenger MF, Cahill KS et al (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98

    Article  PubMed  Google Scholar 

  6. Iwase T, Nagaya N, Fujii T et al (2005) Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia. Cardiovasc Res 66:543–551

    Article  CAS  PubMed  Google Scholar 

  7. Zhou L, Ma W, Yang Z et al (2005) VEGF165 and angiopoietin-1 decreased myocardium infarct size through phosphatidylinositol-3 kinase and Bcl-2 pathways. Gene Ther 12:196–202

    Article  CAS  PubMed  Google Scholar 

  8. Shyu KG, Manor O, Magner M et al (1998) Direct intramuscular injection of plasmid DNA encoding angiopoietin-1 but not angiopoietin-2 augments revascularization in the rabbit ischemic hindlimb. Circulation 98:2081–2087

    CAS  PubMed  Google Scholar 

  9. Yamauchi A, Ito Y, Morikawa M et al (2003) Pre-administration of angiopoietin-1 followed by VEGF induces functional and mature vascular formation in a rabbit ischemic model. J Gene Med 5:994–1004

    Article  CAS  PubMed  Google Scholar 

  10. Jiang S, Haider H, Idris NM et al (2006) Supportive interaction between cell survival signaling and angiocompetent factors enhances donor cell survival and promotes angiomyogenesis for cardiac repair. Circ Res 99:776–784

    Article  CAS  PubMed  Google Scholar 

  11. Sun L, Cui M, Wang Z et al (2007) Mesenchymal stem cells modified with angiopoietin-1 improve remodeling in a rat model of acute myocardial infarction. Biochem Biophys Res Commun 357:779–784

    Article  CAS  PubMed  Google Scholar 

  12. Bitzer M, Armeanu S, Lauer UM et al (2003) Sendai virus vectors as an emerging negative-strand RNA viral vector system. J Gene Med 5:543–553

    Article  CAS  PubMed  Google Scholar 

  13. Yonemitsu Y, Kitson C, Ferrari S et al (2000) Efficient gene transfer to airway epithelium using recombinant Sendai virus. Nat Biotechnol 18:970–973

    Article  CAS  PubMed  Google Scholar 

  14. Masaki I, Yonemitsu Y, Komori K et al (2001) Recombinant Sendai virus-mediated gene transfer to vasculature: a new class of efficient gene transfer vector to the vascular system. Faseb J 15:1294–1296

    CAS  PubMed  Google Scholar 

  15. Li HO, Zhu YF, Asakawa M et al (2000) A cytoplasmic RNA vector derived from nontransmissible Sendai virus with efficient gene transfer and expression. J Virol 74:6564–6569

    Article  CAS  PubMed  Google Scholar 

  16. Okano S, Yonemitsu Y, Nagata S et al (2003) Recombinant Sendai virus vectors for activated T lymphocytes. Gene Ther 10:1381–1391

    Article  CAS  PubMed  Google Scholar 

  17. Jin CH, Kusuhara K, Yonemitsu Y et al (2003) Recombinant Sendai virus provides a highly efficient gene transfer into human cord blood-derived hematopoietic stem cells. Gene Ther 10:272–277

    Article  CAS  PubMed  Google Scholar 

  18. Huang J, Inoue M, Hasegawa M et al (2009) Sendai viral vector mediated angiopoietin-1 gene transfer for experimental ischemic limb disease. Angiogenesis 12:243–249

    Article  CAS  PubMed  Google Scholar 

  19. Hasan MK, Kato A, Muranaka M et al (2000) Versatility of the accessory C proteins of Sendai virus: contribution to virus assembly as an additional role. J Virol 74:5619–5628

    Article  CAS  PubMed  Google Scholar 

  20. Fuerst TR, Niles EG, Studier FW et al (1986) Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci USA 83:8122–8126

    Article  CAS  PubMed  Google Scholar 

  21. Kato A, Sakai Y, Shioda T et al (1996) Initiation of Sendai virus multiplication from transfected cDNA or RNA with negative or positive sense. Genes Cells 1:569–579

    Article  CAS  PubMed  Google Scholar 

  22. Huang J, Ito Y, Kobune M et al (2003) Myocardial injection of CA promoter-based plasmid mediates efficient transgene expression in rat heart. J Gene Med 5:900–908

    Article  CAS  PubMed  Google Scholar 

  23. Seifert FC, Banker M, Lane B et al (1985) An evaluation of resting arterial ischemia models in the rat hind limb. J Cardiovasc Surg (Torino) 26:502–508

    CAS  Google Scholar 

  24. Shujia J, Haider HK, Idris NM et al (2008) Stable therapeutic effects of mesenchymal stem cell-based multiple gene delivery for cardiac repair. Cardiovasc Res 77(3):525–533

    Article  CAS  PubMed  Google Scholar 

  25. Tsuda H, Wada T, Ito Y et al (2003) Efficient BMP2 gene transfer and bone formation of mesenchymal stem cells by a fiber-mutant adenoviral vector. Mol Ther 7:354–365

    Article  CAS  PubMed  Google Scholar 

  26. Ohnishi S, Yasuda T, Kitamura S et al (2007) Effect of hypoxia on gene expression of bone marrow-derived mesenchymal stem cells and mononuclear cells. Stem Cells 25:1166–1177

    Article  CAS  PubMed  Google Scholar 

  27. Papapetropoulos A, Garcia-Cardena G, Dengler TJ et al (1999) Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab Invest 79:213–223

    CAS  PubMed  Google Scholar 

  28. Holash J, Maisonpierre PC, Compton D et al (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998

    Article  CAS  PubMed  Google Scholar 

  29. Kim I, Kim HG, So JN et al (2000) Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3’-Kinase/Akt signal transduction pathway. Circ Res 86(1):24–29

    CAS  PubMed  Google Scholar 

  30. Dallabrida SM, Ismail N, Oberle JR et al (2005) Angiopoietin-1 promotes cardiac and skeletal myocyte survival through integrins. Circ Res 96:e8–e24

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by a grant to HH from the Ministry of Education, Science, Japan and a grant to HJ from National Natural Science Foundation of China [30960379]. We thank Takeo Yamamoto for his technical assistance in vector construction.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hirofumi Hamada or Jianhua Huang.

Additional information

Dr. Wenhua Piao and Huishan Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piao, W., Wang, H., Inoue, M. et al. Transplantation of sendai viral angiopoietin-1-modified mesenchymal stem cells for ischemic limb disease. Angiogenesis 13, 203–210 (2010). https://doi.org/10.1007/s10456-010-9169-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-010-9169-x

Keywords

Navigation