Skip to main content

Advertisement

Log in

Sendai viral vector mediated angiopoietin-1 gene transfer for experimental ischemic limb disease

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Sendai virus vector is emerging as a promising vector for gene therapy, and angiopoietin-1 (Ang-1) has been reported to improve the blood flow recovery in the ischemic limb or heart. In this study, we constructed a human Ang-1-expressing Sendai viral vector (SeVhAng-1) and injected it into the ischemic limb of rats. We found that SeVhAng-1 improved the blood flow recovery and increased the capillary density of the ischemic limb, compared with the controls. We also found that SeVhAng-1 increased p-Akt during the early period of limb ischemia, and decreased apoptosis in ischemic limb. It suggests that SeVhAng-1 may serve as a potential therapeutic tool in ischemic limb disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baumgartner I, Pieczek A, Manor O et al (1998) Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 97:1114–1123

    PubMed  CAS  Google Scholar 

  2. Baumgartner I, Rauh G, Pieczek A et al (2000) Lower-extremity edema associated with gene transfer of naked DNA encoding vascular endothelial growth factor. Ann Intern Med 132:880–884

    PubMed  CAS  Google Scholar 

  3. Takeshita S, Zheng LP, Brogi E et al (1994) Therapeutic angiogenesis: a single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest 93:662–670. doi:10.1172/JCI117018

    Article  PubMed  CAS  Google Scholar 

  4. Tsurumi Y, Kearney M, Chen D et al (1997) Treatment of acute limb ischemia by intramuscular injection of vascular endothelial growth factor gene. Circulation 96(suppl II):II-382–II-388

    Google Scholar 

  5. Rajagopalan S, Mohler ER 3rd, Lederman RJ et al (2003) Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation 108:1933–1938. doi:10.1161/01.CIR.0000093398.16124.29

    Article  PubMed  CAS  Google Scholar 

  6. Davis S, Aldrich TH, Jones PF et al (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87:1161–1169. doi:10.1016/S0092-8674(00)81812-7

    Article  PubMed  CAS  Google Scholar 

  7. Gale NW, Yancopoulos GD (1999) Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev 13:1055–1066. doi:10.1101/gad.13.9.1055

    Article  PubMed  CAS  Google Scholar 

  8. Suri C, Jones PF, Patan S et al (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180. doi:10.1016/S0092-8674(00)81813-9

    Article  PubMed  CAS  Google Scholar 

  9. Suri C, McClain J, Thurston G et al (1998) Increased vascularization in mice overexpressing angiopoietin-1. Science 282:468–471. doi:10.1126/science.282.5388.468

    Article  PubMed  CAS  Google Scholar 

  10. Shyu KG, Manor O, Magner M et al (1998) Direct intramuscular injection of plasmid DNA encoding angiopoietin-1 but not angiopoietin-2 augments revascularization in the rabbit ischemic hindlimb. Circulation 98:2081–2087

    PubMed  CAS  Google Scholar 

  11. Yamauchi A, Ito Y, Morikawa M et al (2003) Pre-administration of angiopoietin-1 followed by VEGF induces functional and mature vascular formation in a rabbit ischemic model. J Gene Med 5:994–1004. doi:10.1002/jgm.439

    Article  PubMed  CAS  Google Scholar 

  12. Takahashi K, Ito Y, Morikawa M et al (2003) Adenoviral-delivered angiopoietin-1 reduces the infarction and attenuates the progression of cardiac dysfunction in the rat model of acute myocardial infarction. Mol Ther 8:584–592. doi:10.1016/S1525-0016(03)00230-2

    Article  PubMed  CAS  Google Scholar 

  13. Bitzer M, Armeanu S, Lauer UM et al (2003) Sendai virus vectors as an emerging negative-strand RNA viral vector system. J Gene Med 5:543–553. doi:10.1002/jgm.426

    Article  PubMed  CAS  Google Scholar 

  14. Yonemitsu Y, Kitson C, Ferrari S et al (2000) Efficient gene transfer to airway epithelium using recombinant Sendai virus. Nat Biotechnol 18:970–973. doi:10.1038/79463

    Article  PubMed  CAS  Google Scholar 

  15. Masaki I, Yonemitsu Y, Komori K et al (2001) Recombinant Sendai virus-mediated gene transfer to vasculature: a new class of efficient gene transfer vector to the vascular system. FASEB J 15:1294–1296

    PubMed  CAS  Google Scholar 

  16. Li HO, Zhu YF, Asakawa M et al (2000) Cytoplasmic RNA vector derived from non-transmissible Sendai virus with efficient gene transfer and expression. J Virol 74:6564–6569. doi:10.1128/JVI.74.14.6564-6569.2000

    Article  PubMed  CAS  Google Scholar 

  17. Ikeda Y, Goto Y, Yonemitsu Y et al (2003) Simian immunodeficiency virus-based lentivirus vector for retinal gene transfer: a preclinical safety study in adult rats. Gene Ther 10:1161–1169. doi:10.1038/sj.gt.3301973

    Article  PubMed  CAS  Google Scholar 

  18. Okano S, Yonemitsu Y, Nagata S et al (2003) Recombinant Sendai virus vectors for activated T lymphocytes. Gene Ther 10:1381–1391. doi:10.1038/sj.gt.3301998

    Article  PubMed  CAS  Google Scholar 

  19. Jin CH, Kusuhara K, Yonemitsu Y et al (2003) Recombinant Sendai virus provides a highly efficient gene transfer into human cord blood-derived hematopoietic stem cells. Gene Ther 10:272–277. doi:10.1038/sj.gt.3301877

    Article  PubMed  CAS  Google Scholar 

  20. Hasan MK, Kato A, Shioda T et al (1997) Creation of an infectious recombinant Sendai virus expressing the firefly luciferase gene from the 3′ proximal first locus. J Gen Virol 78:2813–2820

    PubMed  CAS  Google Scholar 

  21. Fuerst TR, Niles EG, Studier FW et al (1986) Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci USA 83:8122–8126. doi:10.1073/pnas.83.21.8122

    Article  PubMed  CAS  Google Scholar 

  22. Kato A, Sakai Y, Shioda T et al (1996) Initiation of Sendai virus multiplication from transfected cDNA or RNA with negative or positive sense. Genes Cells 1:569–579. doi:10.1046/j.1365-2443.1996.d01-261.x

    Article  PubMed  CAS  Google Scholar 

  23. Seifert FC, Banker M, Lane B et al (1985) An evaluation of resting arterial ischemia models in the rat hind limb. J Cardiovasc Surg (Torino) 26:502–508

    CAS  Google Scholar 

  24. Huang J, Ito Y, Morikawa M et al (2003) Bcl-xL gene transfer protects the heart against ischemia/reperfusion injury. Biochem Biophys Res Commun 311:64–70. doi:10.1016/j.bbrc.2003.09.160

    Article  PubMed  CAS  Google Scholar 

  25. Shimpo M, Ikeda U, Maeda Y et al (2002) AAV-mediated VEGF gene transfer into skeletal muscle stimulates angiogenesis and improves blood flow in a rat hindlimb ischemia model. Cardiovasc Res 53:993–1001. doi:10.1016/S0008-6363(01)00546-6

    Article  PubMed  CAS  Google Scholar 

  26. Iwadate Y, Inoue M, Saegusa T et al (2005) Recombinant Sendai virus vector induces complete remission of established brain tumors through efficient interleukin-2 gene transfer in vaccinated rats. Clin Cancer Res 11:3821–3827. doi:10.1158/1078-0432.CCR-04-1485

    Article  PubMed  CAS  Google Scholar 

  27. Inoue M, Tokusumi Y, Ban H et al (2004) Recombinant Sendai virus vectors deleted in both the matrix and the fusion genes: efficient gene transfer with preferable properties. J Gene Med 6:1069–1081. doi:10.1002/jgm.597

    Article  PubMed  CAS  Google Scholar 

  28. Matsunaga T, Warltier DC, Tessmer J et al (2003) Expression of VEGF and angiopoietins-1 and -2 during ischemia-induced coronary angiogenesis. Am J Physiol Heart Circ Physiol 285:H352–H358

    PubMed  CAS  Google Scholar 

  29. Papapetropoulos A, Garcia-Cardena G, Dengler TJ et al (1999) Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab Invest 79:213–223

    PubMed  CAS  Google Scholar 

  30. Holash J, Maisonpierre PC, Compton D et al (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998. doi:10.1126/science.284.5422.1994

    Article  PubMed  CAS  Google Scholar 

  31. Kwak HJ, So JN, Lee SJ et al (1999) Angiopoietin-1 is an apoptosis survival factor for endothelial cells. FEBS Lett 448:249–253. doi:10.1016/S0014-5793(99)00378-6

    Article  PubMed  CAS  Google Scholar 

  32. Kim I, Kim HG, So JN et al (2000) Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Circ Res 86:24–29

    PubMed  CAS  Google Scholar 

  33. Dallabrida SM, Ismail N, Oberle JR et al (2005) Angiopoietin-1 promotes cardiac and skeletal myocyte survival through integrins. Circ Res 96:e8–e24. doi:10.1161/01.RES.0000158285.57191.60

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by a grant to HH from the Ministry of Education, Science, Japan. We thank Seiji Ohtani for his expert help in histological analysis, and Noriko Kawano for her help in performing the animal experiments. We also thank Takeo Yamamoto for his technical assistance in vector construction.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianhua Huang or Hirofumi Hamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Inoue, M., Hasegawa, M. et al. Sendai viral vector mediated angiopoietin-1 gene transfer for experimental ischemic limb disease. Angiogenesis 12, 243–249 (2009). https://doi.org/10.1007/s10456-009-9144-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-009-9144-6

Keywords

Navigation