Skip to main content

Advertisement

Log in

Transplantation of Human Embryonic Stem Cell–Derived Pericyte-Like Cells Transduced with Basic Fibroblast Growth Factor Promotes Angiogenic Recovery in Mice with Severe Chronic Hindlimb Ischemia

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Critical limb ischemia (CLI) is a state of severe peripheral artery disease, with no effective treatment. Cell therapy has been investigated as a therapeutic tool for CLI, and pericytes are promising therapeutic candidates based on their angiogenic properties. We firstly generated highly proliferative and immunosuppressive pericyte-like cells from embryonic stem (ES) cells. In order to enhance the angiogenic potential, we transduced the basic fibroblast growth factor (bFGF) gene into the pericyte-like cells and found a significant enhancement of angiogenesis in a Matrigel plug assay. Furthermore, we evaluated the bFGF-expressing pericyte-like cells in the previously established chronic hindlimb ischemia model in which bone marrow–derived MSCs were not effective. As a result, bFGF-expressing pericyte-like cells significantly improved blood flow in both laser Doppler perfusion imaging (LDPI) and dynamic contrast-enhanced MRI (DCE-MRI). These findings suggest that bFGF-expressing pericyte-like cells differentiated from ES cells may be a therapeutic candidate for CLI.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CLI:

Critical limb ischemia

ES cells:

Embryonic stem cells

hES cells:

Human embryonic stem cells

bFGF:

Basic fibroblast growth factor

MSC’s:

Mesenchymal stem cells

LDPI:

Laser Doppler perfusion imaging

DCE-MRI:

Dynamic contrast-enhanced magnetic resonance imaging

PAD:

Peripheral artery disease

HLI:

Hindlimb ischemia

Ang-1:

Angiopoietin-1

SDF-1:

Stromal cell–derived factor-1

PDGF-BB:

Platelet-derived growth factor isoform BB

IL-8:

Interleukin-8

HUVECs:

Human umbilical vein endothelial cells

BMMSCs:

Bone marrow mesenchymal stem cells

IHC:

Immunohistochemistry

H&E:

Hematoxylin-eosin

MAB:

Mesoangioblast

FGF2:

Basic fibroblast growth factor

ES-PLCs:

ES-derived pericyte-like cells

VEGF:

Vascular endothelial growth factor

References

  1. Uccioli L, Meloni M, Izzo V, Giurato L, Merolla S, Gandini R. Critical limb ischemia: current challenges and future prospects. Vasc Health Risk Manag. 2018;14:63–74. https://doi.org/10.2147/VHRM.S125065.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Armstrong EJ, Armstrong DG. Critical limb ischemia. Vasc Med. 2021;26(2):228–31. https://doi.org/10.1177/1358863X20987611.

    Article  PubMed  Google Scholar 

  3. Levin SR, Arinze N, Siracuse JJ. Lower extremity critical limb ischemia: a review of clinical features and management. Trends Cardiovasc Med. 2020;30(3):125–30. https://doi.org/10.1016/j.tcm.2019.04.002.

    Article  PubMed  Google Scholar 

  4. Teraa M, Conte MS, Moll FL, Verhaar MC. Critical limb ischemia: current trends and future directions. J Am Heart Assoc. 2016;5(2):e002938. https://doi.org/10.1161/JAHA.115.002938.

  5. Mills JL Sr. Open bypass and endoluminal therapy: complementary techniques for revascularization in diabetic patients with critical limb ischaemia. Diabetes Metab Res Rev. 2008;24(Suppl 1):S34-39. https://doi.org/10.1002/dmrr.829.

    Article  PubMed  Google Scholar 

  6. Karimi A, Lauria AL, Aryavand B, Neville RF. Novel therapies for critical limb-threatening ischemia. Curr Cardiol Rep. 2022;24(5):513–7. https://doi.org/10.1007/s11886-022-01669-6.

    Article  PubMed  Google Scholar 

  7. Qadura M, Terenzi DC, Verma S, Al-Omran M, Hess DA. Concise review: cell therapy for critical limb ischemia: an integrated review of preclinical and clinical studies. Stem Cells. 2018;36(2):161–71. https://doi.org/10.1002/stem.2751.

    Article  PubMed  Google Scholar 

  8. Morishita R, Shimamura M, Takeya Y, Nakagami H, Chujo M, Ishihama T, et al. Combined analysis of clinical data on HGF gene therapy to treat critical limb ischemia in Japan. Curr Gene Ther. 2020;20(1):25–35. https://doi.org/10.2174/1566523220666200516171447.

    Article  CAS  PubMed  Google Scholar 

  9. Gu Y, Rampin A, Alvino VV, Spinetti G, Madeddu P. Cell therapy for critical limb ischemia: advantages, limitations, and new perspectives for treatment of patients with critical diabetic vasculopathy. Curr Diab Rep. 2021;21(3):11. https://doi.org/10.1007/s11892-021-01378-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barc P, Antkiewicz M, Sliwa B, Fraczkowska K, Guzinski M, Dawiskiba T, et al. Double VEGF/HGF gene therapy in critical limb ischemia complicated by diabetes mellitus. J Cardiovasc Transl Res. 2021;14(3):409–15. https://doi.org/10.1007/s12265-020-10066-9.

    Article  PubMed  Google Scholar 

  11. Lozano Navarro LV, Chen X, Girata Viviescas LT, Ardila-Roa AK, Luna-Gonzalez ML, Sossa CL, et al. Mesenchymal stem cells for critical limb ischemia: their function, mechanism, and therapeutic potential. Stem Cell Res Ther. 2022;13(1):345. https://doi.org/10.1186/s13287-022-03043-3.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shimatani K, Sato H, Saito A, Sasai M, Watanabe K, Mizukami K, et al. A novel model of chronic limb ischemia to therapeutically evaluate the angiogenic effects of drug candidates. Am J Physiol Heart Circ Physiol. 2021;320(3):H1124–35. https://doi.org/10.1152/ajpheart.00470.2020.

    Article  CAS  PubMed  Google Scholar 

  13. Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005;97(6):512–23. https://doi.org/10.1161/01.RES.0000182903.16652.d7.

    Article  CAS  PubMed  Google Scholar 

  14. Hamilton NB, Attwell D, Hall CN. Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front. Neuroenerg. 2010;2:5. https://doi.org/10.3389/fnene.2010.00005.

  15. Hammes HP, Lin J, Renner O, Shani M, Lundqvist A, Betsholtz C, et al. Pericytes and the pathogenesis of diabetic retinopathy. Diabetes. 2002;51(10):3107–12. https://doi.org/10.2337/diabetes.51.10.3107.

    Article  CAS  PubMed  Google Scholar 

  16. Beltramo E, Porta M. Pericyte loss in diabetic retinopathy: mechanisms and consequences. Curr Med Chem. 2013;20(26):3218–25. https://doi.org/10.2174/09298673113209990022.

    Article  CAS  PubMed  Google Scholar 

  17. Teichert M, Milde L, Holm A, Stanicek L, Gengenbacher N, Savant S, et al. Pericyte-expressed Tie2 controls angiogenesis and vessel maturation. Nat Commun. 2017;8:16106. https://doi.org/10.1038/ncomms16106.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Geranmayeh MH, Rahbarghazi R, Farhoudi M. Targeting pericytes for neurovascular regeneration. Cell Commun Signal. 2019;17(1):26. https://doi.org/10.1186/s12964-019-0340-8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Eilken HM, Dieguez-Hurtado R, Schmidt I, Nakayama M, Jeong HW, Arf H, et al. Pericytes regulate VEGF-induced endothelial sprouting through VEGFR1. Nat Commun. 2017;8(1):1574. https://doi.org/10.1038/s41467-017-01738-3.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roobrouck VD, Clavel C, Jacobs SA, Ulloa-Montoya F, Crippa S, Sohni A, et al. Differentiation potential of human postnatal mesenchymal stem cells, mesoangioblasts, and multipotent adult progenitor cells reflected in their transcriptome and partially influenced by the culture conditions. Stem Cells. 2011;29(5):871–82. https://doi.org/10.1002/stem.633.

    Article  CAS  PubMed  Google Scholar 

  21. Quattrocelli M, Palazzolo G, Perini I, Crippa S, Cassano M, Sampaolesi M. Mouse and human mesoangioblasts: isolation and characterization from adult skeletal muscles. Methods Mol Biol. 2012;798:65–76. https://doi.org/10.1007/978-1-61779-343-1_4.

    Article  CAS  PubMed  Google Scholar 

  22. Berry SE. Concise review: mesoangioblast and mesenchymal stem cell therapy for muscular dystrophy: progress, challenges, and future directions. Stem Cells Transl Med. 2015;4(1):91–8. https://doi.org/10.5966/sctm.2014-0060.

    Article  CAS  PubMed  Google Scholar 

  23. Scibona E, Morbidelli M. Expansion processes for cell-based therapies. Biotechnol Adv. 2019;37(8):107455. https://doi.org/10.1016/j.biotechadv.2019.107455.

    Article  CAS  PubMed  Google Scholar 

  24. Stebbins MJ, Gastfriend BD, Canfield SG, Lee MS, Richards D, Faubion MG, et al. Human pluripotent stem cell-derived brain pericyte-like cells induce blood-brain barrier properties. Sci Adv. 2019;5(3):eaau7375. https://doi.org/10.1126/sciadv.aau7375.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dar A, Domev H, Ben-Yosef O, Tzukerman M, Zeevi-Levin N, Novak A, et al. Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation. 2012;125(1):87–99. https://doi.org/10.1161/CIRCULATIONAHA.111.048264.

    Article  PubMed  Google Scholar 

  26. Kumar A, D’Souza SS, Moskvin OV, Toh H, Wang B, Zhang J, et al. Specification and diversification of pericytes and smooth muscle cells from mesenchymoangioblasts. Cell Rep. 2017;19(9):1902–16. https://doi.org/10.1016/j.celrep.2017.05.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun J, Huang Y, Gong J, Wang J, Fan Y, Cai J, et al. Transplantation of hPSC-derived pericyte-like cells promotes functional recovery in ischemic stroke mice. Nat Commun. 2020;11(1):5196. https://doi.org/10.1038/s41467-020-19042-y.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dar A, Itskovitz-Eldor J. Derivation of pericytes from human pluripotent stem cells. Methods Mol Biol. 2021;2235:119–25. https://doi.org/10.1007/978-1-0716-1056-5_8.

    Article  CAS  PubMed  Google Scholar 

  29. Vodyanik MA, Yu J, Zhang X, Tian S, Stewart R, Thomson JA, et al. A mesoderm-derived precursor for mesenchymal stem and endothelial cells. Cell Stem Cell. 2010;7(6):718–29. https://doi.org/10.1016/j.stem.2010.11.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Uenishi G, Theisen D, Lee JH, Kumar A, Raymond M, Vodyanik M, et al. Tenascin C promotes hematoendothelial development and T lymphoid commitment from human pluripotent stem cells in chemically defined conditions. Stem Cell Reports. 2014;3(6):1073–84. https://doi.org/10.1016/j.stemcr.2014.09.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rotini A, Martinez-Sarra E, Duelen R, Costamagna D, Di Filippo ES, Giacomazzi G, et al. Aging affects the in vivo regenerative potential of human mesoangioblasts. Aging Cell. 2018;17(2):e12714. https://doi.org/10.1111/acel.12714.

  32. Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood. 2005;105(5):2214–9. https://doi.org/10.1182/blood-2004-07-2921.

    Article  CAS  PubMed  Google Scholar 

  33. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815–22. https://doi.org/10.1182/blood-2004-04-1559.

    Article  CAS  PubMed  Google Scholar 

  34. Chen ST, Gysin R, Kapur S, Baylink DJ, Lau KH. Modifications of the fibroblast growth factor-2 gene led to a marked enhancement in secretion and stability of the recombinant fibroblast growth factor-2 protein. J Cell Biochem. 2007;100(6):1493–508. https://doi.org/10.1002/jcb.21136.

    Article  CAS  PubMed  Google Scholar 

  35. Evseenko D, Zhu Y, Schenke-Layland K, Kuo J, Latour B, Ge S, et al. Mapping the first stages of mesoderm commitment during differentiation of human embryonic stem cells. Proc Natl Acad Sci U S A. 2010;107(31):13742–7. https://doi.org/10.1073/pnas.1002077107.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  36. Gao F, Chiu SM, Motan DA, Zhang Z, Chen L, Ji HL, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis. 2016;7:e2062. https://doi.org/10.1038/cddis.2015.327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hassanzadeh A, Rahman HS, Markov A, Endjun JJ, Zekiy AO, Chartrand MS, et al. Mesenchymal stem/stromal cell-derived exosomes in regenerative medicine and cancer; overview of development, challenges, and opportunities. Stem Cell Res Ther. 2021;12(1):297. https://doi.org/10.1186/s13287-021-02378-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG, et al. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J Vasc Surg. 2007;45(Suppl S):S5-67. https://doi.org/10.1016/j.jvs.2006.12.037.

    Article  PubMed  Google Scholar 

  39. Singanamalli A, Rusu M, Sparks RE, Shih NN, Ziober A, Wang LP, et al. Identifying in vivo DCE MRI markers associated with microvessel architecture and gleason grades of prostate cancer. J Magn Reson Imaging. 2016;43(1):149–58. https://doi.org/10.1002/jmri.24975.

    Article  PubMed  Google Scholar 

  40. Pinker K, Helbich TH, Morris EA. The potential of multiparametric MRI of the breast. Br J Radiol. 2017;90(1069):20160715. https://doi.org/10.1259/bjr.20160715.

    Article  PubMed  Google Scholar 

  41. Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, et al. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther. 2020;5(1):181. https://doi.org/10.1038/s41392-020-00222-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Davies MM, Mathur P, Carnochan P, Saini S, Allen-Mersh TG. Effect of manipulation of primary tumour vascularity on metastasis in an adenocarcinoma model. Br J Cancer. 2002;86(1):123–9. https://doi.org/10.1038/sj.bjc.6600020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tsunoda S, Nakamura T, Sakurai H, Saiki I. Fibroblast growth factor-2-induced host stroma reaction during initial tumor growth promotes progression of mouse melanoma via vascular endothelial growth factor A-dependent neovascularization. Cancer Sci. 2007;98(4):541–8. https://doi.org/10.1111/j.1349-7006.2007.00432.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Astellas Pharma Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichiro Shimatani.

Ethics declarations

Ethics Approval

All procedures performed in this study involving animals were approved by the Institutional Animal Care and Use Committee of Osaka University. No human studies were carried out by the authors for this article.

Conflict of Interest

K.S., H.S., K.M., and M.K. are employed by Astellas Pharma Inc.

Additional information

Communicated by Associate Editor Nicola Smart oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 111 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimatani, K., Sato, H., Mizukami, K. et al. Transplantation of Human Embryonic Stem Cell–Derived Pericyte-Like Cells Transduced with Basic Fibroblast Growth Factor Promotes Angiogenic Recovery in Mice with Severe Chronic Hindlimb Ischemia. J. of Cardiovasc. Trans. Res. (2024). https://doi.org/10.1007/s12265-024-10496-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12265-024-10496-9

Keywords

Navigation