Skip to main content
Log in

Assessing the short-term variability of bacterial composition in background aerosols of the Eastern Mediterranean during a rapid change of meteorological conditions

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

This study used a PCR-based molecular identification technique to examine bacterial assemblage composition in background aerosols of the eastern Mediterranean Sea during a rapid change of meteorological conditions. 16S rDNA fragments of 166 clones were identified and were affiliated with six bacterial phyla (Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, Spirochetes, and Fusobacteria), plant-related sequences, and other uncultivated bacterial groups. The analyzed clones were closely related to sequences previously characterized from diverse sources including soil, plants, marine water and sediment, human skin, activated sludge, house dust, indoor air, gut microbiota, and food. Plant- and human-associated sequences accounted for the largest fraction of the identified clones. Spore-forming Firmicutes showed a considerable increase when air mass origin changed from north to south implying that south winds favored bacterial spores transportation from the inland of Crete or North Africa. However, no conclusive trends were revealed for other groups of microorganisms. The influence of air mass origin was further investigated for marine- and terrestrial-associated sequences. A higher number of marine-associated sequences were identified when south winds crossed the inland of Crete, while the opposite was observed when north winds passed over the Aegean Sea. This discrepancy could be partly explained by the fact that the north winds were blowing at very low speed which constrained the formation of sea-spray aerosols and the ejection of marine microbes from sea surface to the atmosphere. Overall, the interpretation of bacterial assemblage composition in relation to the meteorological conditions was proved to be a complicated task which is in line with previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bertolini, V., Gandolfi, I., Ambrosini, R., Bestetti, G., Innocente, E., Rampazzo, G., et al. (2013). Temporal variability and effect of environmental variables on airborne bacterial communities in an urban area of Northern Italy. Applied Microbiology and Biotechnology. doi:10.1007/s00253-012-4450-0.

  • Bovallius, A., Bucht, B., Roffey, R., & Anas, P. (1978). Long-range air transmission of bacteria. Applied and Environmental Microbiology, 35, 1231–1232.

    CAS  Google Scholar 

  • Bowers, R. M., Lauber, C. L., Wiedinmyer, C., Hamady, M., Hallar, A. G., Fall, R., et al. (2009). Characterization of airborne microbial communities at a high elevation site and their potential to act as atmospheric ice nuclei. Applied and Environmental Microbiology, 75, 5121–5130.

    Article  CAS  Google Scholar 

  • Bowers, R. M., McCubbin, I. B., Hallar, A. G., & Fierer, N. (2012). Seasonal variability in airborne bacterial communities at a high-elevation site. Atmospheric Environment, 50, 41–49.

    Article  CAS  Google Scholar 

  • Bowers, R. M., McLetchie, S., Knight, R., & Fierer, N. (2011a). Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. The ISME Journal, 5, 601–612.

    Article  CAS  Google Scholar 

  • Bowers, R. M., Sullivan, A. P., Costello, E. K., Collett, J. L., Jr, Knight, R., & Fierer, N. (2011b). Sources of bacteria in outdoor air across cities in the Midwestern United States. Applied and Environmental Microbiology, 77, 6350–6356.

    Article  CAS  Google Scholar 

  • Brodie, E. L., DeSantis, T. Z., Parker, J. P. M., Zubietta, I. X., Piceno, Y. M., & Andersen, G. L. (2007). Urban aerosols harbor diverse and dynamic bacterial populations. Proceedings of the National Academy of Sciences of the USA, 104, 299–304.

    Article  CAS  Google Scholar 

  • Burrows, S. M., Elbert, W., Lawrence, M. G., & Pöschl, U. (2009). Bacteria in the global atmosphere—part 1: Review and synthesis of literature data for different ecosystems. Atmospheric Chemistry and Physics, 9, 9263–9280.

    Article  CAS  Google Scholar 

  • Clarke, K. R., & Ainsworth, M. (1993). A method of linking multivariate community structure to environmental variables. Marine Ecology Progress Series, 92, 205–219.

    Article  Google Scholar 

  • Deguillaume, L., Leriche, M., Amato, P., Ariya, P. A., Delort, A.-M., Pöschl, U., et al. (2008). Microbiology and atmospheric processes: Chemical interactions of primary biological aerosols. Biogeosciences, 5, 1073–1084.

    Article  CAS  Google Scholar 

  • Draxler, R. R., & Rolph, G. D. (2003). HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory). Available: http://www.arl.noaa.gov/ready/hysplit4.html.

  • Fahlgren, C., Hagström, A., Nilsson, D., & Zweifel, U. L. (2010). Annual variations in the diversity, viability, and origin of airborne bacteria. Applied and Environmental Microbiology, 76, 3015–3025.

    Article  CAS  Google Scholar 

  • Felsenstein, J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution, 17, 368–376.

    Article  CAS  Google Scholar 

  • Fierer, N., Liu, Z., Rodríguez-Hernández, M., Knight, R., Henn, M., & Hernandez, M. T. (2008). Short-term temporal variability in airborne bacterial and fungal populations. Applied and Environmental Microbiology, 74, 200–207.

    Article  CAS  Google Scholar 

  • Franzetti, A., Gandolfi, I., Gaspari, E., Ambrosini, R., & Bestetti, G. (2011). Seasonal variability of bacteria in fine and coarse urban air particulate matter. Applied Microbiology and Biotechnology, 90, 745–753.

    Article  CAS  Google Scholar 

  • Fröhlich-Nowoisky, J., Pickersgill, D. A., Després, V. R., & Pöschl, U. (2009). High diversity of fungi in air particulate matter. Proceedings of the National Academy of Sciences of the USA, 106, 12814–12819.

    Article  Google Scholar 

  • Grice, E. A., Kong, H. H., Conlan, S., Deming, C. B., Davis, J., Young, A. C., et al. (2010). Topographical and temporal diversity of the human skin microbiome. Science, 324(5931), 1190–1192.

    Article  Google Scholar 

  • Griffin, D. W. (2004). Terrestrial microorganisms at an altitude of 20,000 m in earth’s atmosphere. Aerobiologia, 20, 135–140.

    Article  Google Scholar 

  • Griffin, D. W., Gonzalez, C., Teigell, N., Petrosky, T., Northup, D. E., & Lyles, M. (2011). Observations on the use of membrane filtration and liquid impingement to collect airborne microorganisms in various atmospheric environments. Aerobiologia, 27, 25–35.

    Article  Google Scholar 

  • Griffin, D. W., Kellogg, C. A., Garrison, V. H., Lisle, J. T., Borden, T. C., & Shinn, E. A. (2003). Atmospheric microbiology in the northern Caribbean during African dust events. Aerobiologia, 19, 143–157.

    Article  Google Scholar 

  • Jones, A., & Harrison, R. (2004). The effects of meteorological factors on atmospheric bioaerosol concentrations: A review. Science of the Total Environment, 326, 151–180.

    Article  CAS  Google Scholar 

  • Kellogg, C. A., & Griffin, D. W. (2006). Aerobiology and the global transport of desert dust. Trends in Ecology & Evolution, 21, 638–644.

    Article  Google Scholar 

  • Lane, D. J. (1991). 16S/23S rDNA sequencing. In E. Stackebrandt & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematics (pp. 115–175). Chichester, UK: Wiley.

    Google Scholar 

  • Lelieveld, J., Berresheim, H., Borrmann, S., Crutze, P. J., Dentener, F. J., Fischer, H., et al. (2002). Global air pollution crossroads over the Mediterranean. Science, 298, 794–799.

    Article  CAS  Google Scholar 

  • Lighthart, B. (1997). The ecology of bacteria in the alfresco atmosphere. FEMS Microbiology Ecology, 23, 263–274.

    Article  CAS  Google Scholar 

  • Lighthart, B., & Shaffer, B. (1995). Airborne bacteria in the atmospheric surface layer: Temporal distribution above a grass seed field. Applied and Environmental Microbiology, 61, 1492–1496.

    CAS  Google Scholar 

  • Lindemann, J., Constantinidou, H., Barchet, W., & Upper, C. (1982). Plants as sources of airborne bacteria, including ice nucleation-active bacteria. Applied and Environmental Microbiology, 44, 1059–1063.

    CAS  Google Scholar 

  • Lindemann, J., & Upper, C. (1985). Aerial dispersal of epiphytic bacteria over bean plants. Applied and Environmental Microbiology, 50, 1229–1232.

    CAS  Google Scholar 

  • Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, H., et al. (2004). ARB: A software environment for sequence data. Nucleic Acids Research, 32, 1363–1371.

    Article  CAS  Google Scholar 

  • Maron, P. A., Lejon, D. P. H., Carvalho, E., Bizet, K., Lemanceau, P., Ranjard, L., et al. (2005). Assessing genetic structure and diversity of airborne bacterial communities by DNA fingerprinting and 16S rDNA clone library. Atmospheric Environment, 39(20), 3687–3695.

    Article  CAS  Google Scholar 

  • Moulin, C., & Chiapello, I. (2006). Impact of human-induced desertification on the intensification of Sahel dust emission and export over the last decades. Geophysical Research Letters, 33. doi:10.1029/2006GL025923.

  • Pearce, D. A., Hughes, K. A., Lachlan-Cope, T., Harangozo, S. A., & Jones, A. E. (2010). Biodiversity of air-borne microorganisms at Halley station, Antarctica. Extremophiles, 14, 145–159.

    Article  Google Scholar 

  • Polymenakou, P. N. (2012). Atmosphere: A source of pathogenic or beneficial microbes? Atmosphere, 3, 87–102.

    Article  Google Scholar 

  • Polymenakou, P. N., Mandalakis, M., Stephanou, E. G., & Tselepides, A. (2008). Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the Eastern Mediterranean. Environmental Health Perspectives, 116, 292–296.

    Article  Google Scholar 

  • Prospero, J. M., & Lamb, P. J. (2003). African droughts and dust transport to the Caribbean: Climate change implications. Science, 302, 1024–1027.

    Article  CAS  Google Scholar 

  • Singleton, D. R., Furlong, M. A., Rathbun, S. L., & Whitman, W. B. (2001). Quantitative comparisons of 16S rDNA gene sequences libraries from environmental samples. Applied and Environmental Microbiology, 67, 4374–4376.

    Article  CAS  Google Scholar 

  • Smith, D. J., Griffin, D. W., & Schuerger, A. C. (2010). Stratospheric microbiology at 20 km over the Pacific Ocean. Aerobiologia, 26(1), 35–46.

    Article  Google Scholar 

  • Vergin, K. L., Urbach, E., Stein, J. L., DeLong, E. F., Lanoil, B. D., & Giovannoni, S. J. (1998). Screening of a fosmid library of marine environmental genomic DNA fragments reveals four clones related to members of the order Planctomycetales. Applied and Environmental Microbiology, 64, 3075–3078.

    CAS  Google Scholar 

  • Womack, A. M., Bohannan, B. J. M., & Green, J. L. (2010). Biodiversity and biogeography of the atmosphere. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 3645–3653.

    Article  Google Scholar 

  • Zweifel, U. L., Hagström, Å., Holmfeldt, K., Thyrhaug, R., Geels, C., Frohn, L. M., et al. (2012). High bacterial 16S rRNA gene diversity above the atmospheric boundary layer. Aerobiologia. doi:10.1007/s10453-012-9250-6.

Download references

Acknowledgments

This work was supported by the Hellenic Centre for Marine Research through the General Secretariat for Research and Technology, Ministry of Development, Hellas. MM was supported by an EU-FP7 Marie Curie International Outgoing Fellowship (PIOF-GA-2009-235470).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Polymenakou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 227 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polymenakou, P.N., Mandalakis, M. Assessing the short-term variability of bacterial composition in background aerosols of the Eastern Mediterranean during a rapid change of meteorological conditions. Aerobiologia 29, 429–441 (2013). https://doi.org/10.1007/s10453-013-9295-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-013-9295-1

Keywords

Navigation