Skip to main content

Advertisement

Log in

Biodiversity of air-borne microorganisms at Halley station, Antarctica

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

A study of air-borne microbial biodiversity over an isolated scientific research station on an ice-shelf in continental Antarctica was undertaken to establish the potential source of microbial colonists. The study aimed to assess: (1) whether microorganisms were likely to have a local (research station) or distant (marine or terrestrial) origin, (2) the effect of changes in sea ice extent on microbial biodiversity and (3) the potential human impact on the environment. Air samples were taken above Halley Research Station during the austral summer and austral winter over a 2-week period. Overall, a low microbial biodiversity was detected, which included many sequence replicates. No significant patterns were detected in the aerial biodiversity between the austral summer and the austral winter. In common with other environmental studies, particularly in the polar regions, many of the sequences obtained were from as yet uncultivated organisms. Very few marine sequences were detected irrespective of the distance to open water, and around one-third of sequences detected were similar to those identified in human studies, though both of these might reflect prevailing wind conditions. The detected aerial microorganisms were markedly different from those obtained in earlier studies over the Antarctic Peninsula in the maritime Antarctic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams BJ, Bardgett RD, Ayres E, Wall DH, Aislabie J, Bamforth S, Bargagli R, Cary C, Cavacini P, Connell L, Convey P, Fell JW, Frati F, Hogg ID, Newsham KK, O’Donnell A, Russell N, Seppelt RD, Stevens MI (2006) Diversity and distribution of Victoria Land biota. Soil Biol Biochem 38:3003–3018

    Article  CAS  Google Scholar 

  • Ahern HE, Walsh KA, Hill TCJ, Moffett BF (2006) Ice-nucleation negative fluorescent pseudomonads isolated from Hebridean cloud and rain water produce biosurfuctants. Biogeosciences 3:1561–1586

    Google Scholar 

  • Aislabie JM, Chour K-L, Saul DJ, Miyauchi S, Ayton J, Paetzold RF, Balks MR (2006) Dominant bacteria in soils of Marble Point and Wright Valley Victoria Land Antarctica. Soil Biol Biochem 38:3041–3056

    Article  CAS  Google Scholar 

  • Allen TD, Lawson PA, Collins MD, Falsen E, Tanner RS (2006) Cloacibacterium normanense gen. nov., sp. nov., a novel bacterium in the family Flavobacteriaceae isolated from municipal wastewater. Int J Syst Evol Microbiol 56:1311–1316

    Article  PubMed  CAS  Google Scholar 

  • Amato P, Parazols M, Sancelme M, Laj P, Mailhot G, Delort A-M (2007) An important oceanic source of microorganisms for cloud water at the Puy de Dôme: (France). Atmos Environ 41:8253–8263

    Article  CAS  Google Scholar 

  • Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H (2000) Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589

    PubMed  CAS  Google Scholar 

  • Balkwill DL, Reeves RH, Drake GR, Reeves JY, Crocker FH, King MB, Boone DR (1997) Phylogenetic characterization of bacteria in the subsurface microbial culture collection. FEMS Microbiol Rev 20:201–216

    Article  PubMed  CAS  Google Scholar 

  • Bauer R, Bekker JP, van Wyk N, du Toit C, Dicks LM, Kossmann J (2009) Exopolysaccharide production by lactose-hydrolyzing bacteria isolated from traditionally fermented milk. Int J Food Microbiol 131:260–264

    Article  PubMed  CAS  Google Scholar 

  • Benninghoff WS, Benninghoff AS (1978) Air-borne particles and electric fields near the ground in Antarctica. Ant J US 13:163–167

    Google Scholar 

  • Borde X, Guieysse B, Delgado O, Munoz R, Hatti-Kaul R, Nugier-Chauvin C, Patin H, Mattiasson B (2003) Synergistic relationships in algal-bacterial microcosms for the treatment of aromatic pollutants. Bioresour Technol 86:293–300

    Article  PubMed  Google Scholar 

  • Bridge PD, Newsham KK, Denton GJ (2008) Snow mould caused by a Pythium sp.: a potential vascular plant pathogen in the maritime Antarctic. Plant Path 57:1066–1072

    Article  Google Scholar 

  • Busse H-J, Denner EBM, Buczolits S, Salkinoja-Salonen M, Bennasar A, Kämpfer P (2003) Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol 53:1253–1260

    Article  PubMed  CAS  Google Scholar 

  • Cameron RE, Morelli FA, Honour RC (1973) Aerobiological monitoring of Dry Valley drilling sites. Ant J US 8:211–214

    Google Scholar 

  • Campbell BJ, Cottrell MT, Jeanthon C, Prieur D, Cary SC (2001) Dominance and distribution of distinct epsilon proteobacteria in the episymbiotic community of Alvinella pompejana a deep-sea hydrothermal vent annelid. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:AF357182]+-newId. Accessed 01 Sep 2009

  • Chao A (1984) Non-parametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  • Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov V, Sandman K, Reeve JN (2000) Recovery and identification of viable bacteria immured in glacial ice. Icarus 144:479–485

    Article  Google Scholar 

  • Chun J (2003) Phylogeny of Sphingomonas sp. KH3-2. http://www.ebi.ac.uk/cgi-bin/sva/sva.pl?session=%2Ftmp%2FsvaTempFiles%2FSESSION26807-1241007829-1&index=0&view=660001663. Accessed 29 Apr 2009

  • Convey P (2001) Antarctic ecosystems. In: Encyclopedia of biodiversity, vol 1, pp 171–184

  • Convey P, Frenot Y, Gremmen N, Bergstrom D (2006) Biological invasions. In: Bergstrom DM, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Springer, Dordrecht, pp 193–220

    Chapter  Google Scholar 

  • Czarnecki B, Bialasiewicz D (1987) Fungi as a component of the aerosphere of H. Arctowski Polar Station and its vicinity (King George Island, South Shetland Islands). Polish Polar Res 8:153–158

    Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  PubMed  CAS  Google Scholar 

  • Dong X, Hong Q, Li S (2007) Phenol-degrading bacterium Acinetobacter sp. PND-5. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:EF494200]+-newId. Accessed 21 Apr 2009

  • Ekelöf E (1908) Bakteriologische studien während der Schwedischen Sudpolar-Expedition 1901–1903. In: Nordenskjöld O (ed) Wissenschaftliche Ergebnisse der Schwedischen Süpolar-Expedition 1901–1903. Generalstabs Lithogr. Inst, Stockholm

    Google Scholar 

  • Flagan SF, Leadbetter JR (2006) Utilization of capsaicin and vanillylamine as growth substrates by Capsicum (hot pepper)-associated bacteria. Environ Microbiol 8:560–565

    Article  PubMed  CAS  Google Scholar 

  • Frenot Y, Chown SL, Whinam J, Selkirk PM, Convey P, Skotnicki M, Bergstrom DM (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev 80:45–72

    Article  PubMed  Google Scholar 

  • Frenot Y, Convey P, Lebouvier M, Chown SL, Whinam J, Selkirk PM, Skotnicki M, Bergstrom DM (2008) Antarctic and subantarctic biological invasions: sources, extents, impacts and implications. In: Rogan-Finnemore (ed) Proceedings of non-native species in the Antarctic. Gateway Antarctica, Christchurch, pp 53–96

  • Gai Y (2006) Pseudomonas sp. Nj-55 http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:AM409368]+-newId. Accessed Sep 2009

  • Gazert H (1912) Untersuchungen über Meeresbakterien und ihren Einfluss auf den Stoffwechsel im Meere. Deutsche Südpolar-Expedition 1901–1903, vol 7, pp 1–296

  • Gihring T, Moser DP, Onstott TC (2005) The distribution of microbial taxa in the subsurface water of the Kalahari Shield, South Africa. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:DQ256357]+-newId. Accessed 21 Apr 2009

  • Good IJ (1953) The population frequencies of species and the estimation of the population parameters. Biometrica 40:237–264

    Google Scholar 

  • Grice EA, Kong HH, Renaud G, Young AC, NISC Comparative Sequencing Program, Bouffard GG, Blakesley RW, Wolfsberg TG, Turner ML, Segre JA (2008) A diversity profile of the human skin microbiota. Genome Res 18:1043–1050

    Article  PubMed  CAS  Google Scholar 

  • Hamada T (2003) Sphingobium yanoikuyae. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:AB109749]+-newId. Accessed 01 Sep 2009

  • Hatch MT, Dimmick RL (1966) Physiological response of air-borne bacteria to shifts in relative humidity. Bacteriol Rev 30:597–603

    PubMed  CAS  Google Scholar 

  • He JZ, Zheng Y, Chen CR, He YQ, Zhang LM (2008) Microbial composition and diversity of an upland red soil under long-term fertilization treatments as revealed by culture-dependent and culture-independent approaches. J Soils Sediments 8:349–358

    Article  CAS  Google Scholar 

  • Heylen K, Vanparys B, Wittebolle L, Verstraete W, Boon N, De Vos P (2006) Cultivation-dependent diversity study on denitrification using defined growth media developed with an evolutionary algorithm. Appl Environ Microbiol 72:2637–2643

    Article  PubMed  CAS  Google Scholar 

  • Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon; a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  PubMed  CAS  Google Scholar 

  • Hughes KA (2003) Aerial dispersal and survival of sewage-derived faecal coliforms in Antarctica. Atmos Environ 37:3147–3155

    Article  CAS  Google Scholar 

  • Hughes KA (2006) Accidental transfer into Antarctica of alien species with soil on construction vehicles. Aliens 23:8–10

    Google Scholar 

  • Hughes KA, McCartney HA, Lachlan-Cope TA, Pearce DA (2004) A preliminary study of air-borne biodiversity over peninsular Antarctica. Cell Mol Biol 50:537–542

    PubMed  CAS  Google Scholar 

  • Hughes KA, Convey P, Maslen NR, Smith RIL (2009) Accidental transfer of non-native soil organisms into Antarctica on construction vehicles. doi:10.1007/s10530-009-9508-2

  • Huong NL, Itoh K, Suyama K (2007) Diversity of 2, 4-dichlorophenoxyacetic acid (2, 4-D) and 2, 4, 5-Trichlorophenoxyacetic acid (2, 4, 5-T)-degrading bacteria in Vietnamese soils. Microbes Environ 22:243–256

    Article  Google Scholar 

  • Hyman RW, Fukushima M, Diamond L, Kumm J, Giudice LC, Davis RW (2005) Microbes on the human vaginal epithelium. Proc Natl Acad Sci USA 102:7952–7957

    Article  PubMed  CAS  Google Scholar 

  • Jones AE, Wolff EW, Salmon RA, Bauguitte SJ-B, Roscoe HK, Anderson PS, Ames D, Clemitshaw KC, Fleming ZL, Bloss WJ, Heard DE, Lee JD, Read KA, Hamer P, Shallcross DE, Jackson AV, Walker SL, Lewis AC, Mills GP, Plane JMC, Saiz-Lopez A, Sturges WT, Worton DR (2008a) Chemistry of the antarctic boundary layer and the interface with snow: an overview of the CHABLIS campaign. Atmos Chem Phys 8:3789–3803

    CAS  Google Scholar 

  • Jones RT, McCormick KF, Martin AP (2008b) Bacterial communities of Bartonella-positive fleas: diversity and community assembly patterns. Appl Environ Microbiol 74:1667–1670

    Article  PubMed  CAS  Google Scholar 

  • Kerry K, Riddle M, Clarke J (1999) Diseases of Antarctic wildlife. A report for the Scientific Committee on Antarctic Research (SCAR) and the Council of Managers of National Antarctic Programs (COMNAP), 104 pp

  • Khan ST, Hiraishi A (2001) Isolation and characterization of a new poly (3-hydroxybutyrate)-degrading, denitrifying bacterium from activated sludge. FEMS Microbiol Lett 205:253–257

    Article  Google Scholar 

  • Kim J-D, Lee C-G (2006) Two alga-lytic bacteria associated with management of cyanobacterium Anabaena flos-aquae. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:DQ911549]+-newId. Accessed 01 Sep 2009

  • Kim MK, Lee JW, Lee KY, Yang DC (2005) Microbial conversion of major ginsenoside rb(1) to pharmaceutically active minor ginsenoside rd. J Microbiol 43:456–462

    PubMed  CAS  Google Scholar 

  • Kinkel LL (1997) Microbial population dynamics on leaves. Ann Rev Phytopath 35:327–347

    Article  CAS  Google Scholar 

  • Kwon S-W (2003) Phylogenetic analysis of Pseudomonas spp isolated from upland and paddy soils in Korea. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:AY303316]+-newId. Accessed 01 Sep 2009

  • Lacy GH, Cameron RE, Hanson RB, Morelli FA (1970) Microbial analysis of snow and air from the Antarctic interior. Ant J US 5:88–89

    Google Scholar 

  • Lawley B, Ripley S, Bridge P, Convey P (2004) Molecular analysis of geographic patterns in eukaryotic diversity of Antarctic soils. Appl Environ Microbiol 70:5963–5972

    Article  PubMed  CAS  Google Scholar 

  • Lee S (2008) Odor degrading bacteria from sewage treatment plant of Maesan-lee (Korea). http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:FJ477061]+-newId. Accessed 01 Sep 2009

  • Lee S-M, Chao A (1994) Estimating population size via sample coverage for closed capture-recapture models. Biometrics 50:88–97

    Article  PubMed  CAS  Google Scholar 

  • Lee JE, Chown SL (2009) Breaching the dispersal barrier to invasion: quantification and management. Ecol Appl 19:1944–1959

    Article  PubMed  Google Scholar 

  • Li LB, Liu M, Yang K, Han JG, Zhu BC, Peng ZH (2007) Population diversity of rhizosphere bacteria from Bashania fangiana. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:EU169179]+-newId. Accessed 21 Apr 2009

  • Liang B, Li SP (2008) Isolation and characterization of a phenanthrene-degradation strain from a polluted farmland. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:FJ493173]+-newId. Accessed 01 Sep 2009

  • Lin X, Yi D, Xu G (2008) Molecular identification of microorganisms isolated from polar area. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:FJ386496]+-newId. Accessed 21 Apr 2009

  • Lösekann T, Robador A, Niemann H, Knittel K, Boetius A, Dubilier N (2008) Endosymbioses between bacteria and deep-sea siboglinid tubeworms from an Arctic Cold Seep (Haakon Mosby Mud Volcano, Barents Sea). Environ Microbiol 10:3237–3254

    Article  PubMed  CAS  Google Scholar 

  • Marafie SMRH, Ashkanani L (1991) Air-borne bacteria in Kuwait (1986–1988). Grana 30:472–476

    Article  Google Scholar 

  • Martin R, Heilig HGHJ, Zoetendal EG, Jimenez E, Fernandez L, Smidt H, Rodriguez JM (2007) Cultivation-independent assessment of the bacterial diversity of breast milk among healthy women. Res Microbiol 158:31–37

    Article  PubMed  Google Scholar 

  • Mechichi T, Fuchs G (2001) New Acidovorax species capable of anaerobic degradation of 3 4-dihydroxybenzoate. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:AF458096]+-newId. Accessed 01 Sep 2009

  • Mislowack BJ, Onstott TC, Lin LH, Rose G, Ralston C, Sherwood-Lollar B, Pfiffner SM, Kieft T, McCuddy S (2005) In situ cultivation of deep subsurface microorganisms in a mafic sill: implications for SLiME’s. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:DQ069188]+-newId. Accessed 21 Apr 2009

  • Mohn WW, Wilson AE, Bicho P, Moore ER (1999) Physiological and phylogenetic diversity of bacteria growing on resin acids. Syst Appl Microbiol 22:68–78

    PubMed  CAS  Google Scholar 

  • Mueller JG, Devereux R, Santavy DL, Lantz SE, Willis SG, Pritchard PH (1997) Phylogenetic and physiological comparisons of PAH-degrading bacteria from geographically diverse soils. Antonie Van Leeuwenhoek 71:329–343

    Article  PubMed  CAS  Google Scholar 

  • Nakabachi A, Ishikawa H, Kudo T (2003) Extraordinary proliferation of microorganisms in aposymbiotic pea aphids Acyrthosiphon pisum. J Invertebr Pathol 82:152–161

    Article  PubMed  Google Scholar 

  • New Zealand (2007) A five-year work plan for the CEP: report of the Intersessional Contact Group. Antarctic Treaty Consultative Meeting XXX, Committee for Environmental Protection X, Working Paper 15, New Delhi, 30 Apr–11 May 2007

  • Nohynek LJ, Nurmiaho-Lassila EL, Suhonen EL, Busse J, Mohammadi M, Hantula J, Rainey F, Salkinoja-Salonen MS (1996) Description of chlorophenol-degrading Pseudomonas sp. strains KF1T KF3 and NKF1 as a new species of the genus Sphingomonas Sphingomonas subarctica sp. Nov. Int J Syst Bacteriol 46:1042–1055

    Article  PubMed  CAS  Google Scholar 

  • Osman S, La Duc MT, Dekas A, Newcombe D, Venkateswaran K (2008) Microbial burden and diversity of commercial airline cabin air during short and long durations of travel. ISME J 2:482–497

    Article  PubMed  CAS  Google Scholar 

  • Paster BJ, Dewhirst FE (2003) Bacterial diversity of the human oral cavity. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:AY349412]+-newId. Accessed 21 Apr 2009

  • Paster BJ, Falkler WA Jr, Enwonwu CO, Idigbe EO, Savage KO, Levanos VA, Tamer MA, Ericson RL, Lau CN, Dewhirst FE (2002) Prevalent bacterial species and novel phylotypes in advanced noma lesions. J Clin Microbiol 40:2187–2191

    Article  PubMed  CAS  Google Scholar 

  • Paul LR, Chapman BK, Chanway CP (2004) Nitrogen fixing bacteria within Suillus tomentosus (Kauff) Singer Snell and Dick/Pinus contorta var. latifolia (Dougl) Engelm Tuberculate Ectomycorrhizas. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:AY605697]+-newId. Accessed 01 Sep 2009

  • Paulin MM, Novinscak A, St-Arnaud M, Prive J-P, Owen J, Filion M (2006) Molecular characterization and transcriptional activity of antibiotic-producing rhizobacteria with biocontrol properties. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:DQ788996]+-newId. Accessed 01 Sep 2009

  • Pearce DA (2000) A rapid, sensitive method for monitoring bacterioplankton community dynamics, applied to Antarctic freshwater lakes. Polar Biol 23:352–356

    Article  Google Scholar 

  • Pearce DA, van der Gast CJ, Lawley B, Ellis-Evans JC (2003) Bacterioplankton community diversity in a maritime Antarctic lake, determined by culture-dependent and culture independent techniques. FEMS Microbiol Ecol 45:59–70

    Article  PubMed  CAS  Google Scholar 

  • Pearce DA, Bridge PD, Hughes K, Sattler B, Psenner R, Russell NJ (2009) Microorganisms in the atmosphere over Antarctica. FEMS Microbiol Ecol 69:143–157

    Article  PubMed  CAS  Google Scholar 

  • Pirie JHH (1912) Notes on antarctic bacteriology. Report on the scientific research of the voyage of S.Y. “Scotia” during the years 1902, 1903 and 1904, vol 3, pp 137–148

  • Rahman PKSM (2009) Pseudomonas collierea partial 16S rRNA gene, strain PR212T. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:AM421016]+-newId. Accessed 01 Sep 2009

  • Rankin AM, Wolff EW (2000) Ammonium and potassium in snow around an emperor penguin colony. Ant Sci 12:154–159

    Article  Google Scholar 

  • Rankin AM, Wolff EW (2003) A year-long record of size-segregated aerosol composition at Halley, Antarctica. J Geophys Res 108:4775

    Article  CAS  Google Scholar 

  • Rankin AM, Wolff EW, Martin S (2002) Frost flowers: Implications for tropospheric chemistry and ice core interpretation. J Geophys Res 107:4683

    Article  CAS  Google Scholar 

  • Redford AJ, Fierer N (2008) Surveying the phylogenetic diversity of bacteria inhabiting tree leaf surfaces. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:EU448649]+-newId. Accessed 01 Sep 2009

  • Rudolph ED (1970) Local dissemination of plant propagules in Antarctica. In: Holdgate MW (ed) Antarctic ecology. Academic Press, London, pp 812–817

    Google Scholar 

  • Russian Federation (2006) Monitoring of pathogenic microbiota in the Antarctic. In: Antarctic treaty consultative meeting XXIX. Committee for Environmental Protection IX, Information Paper 72, Edinburgh, UK, 12–23 Jun 2006

  • Russian Federation (2009) Microbiological monitoring of the expedition infrastructure facilities in the Antarctic. In: Antarctic treaty consultative meeting XXXII. Committee for Environmental Protection XII, Information Paper 46, Baltimore, USA, 6–17 Apr 2009

  • Saha P, Chakrabarti T (2004) Imtechium gen. nov., isolated from a warm spring of Assam, India. Proposal of Imtechium assamiensis sp. nov. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:AY544767]+-newId. Accessed 21 Apr 2009

  • Sawyer B, Rao KC, O’Brien P, Elenbogen G, Zenz DR, Lue Hing C (1996) Changes in bacterial aerosols with height above aeration tanks. J Environ Eng 5:368–373

    Google Scholar 

  • Shawkey MD, Mills KL, Dale C, Hill GE (2005) Microbial diversity of wild bird feathers revealed through culture-based and culture-independent techniques. Microb Ecol 50:40–47

    Article  PubMed  Google Scholar 

  • Sikorski J, Jahr H, Wackernagel W (2001) The structure of a local population of phytopathogenic Pseudomonas brassicacearum from agricultural soil indicates development under purifying selection pressure. Environ Microbiol 3:176–186

    Article  PubMed  CAS  Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688

    Article  Google Scholar 

  • Sjoling S, Cowan DA (2000) Detecting human bacterial contamination in Antarctic soils. Polar Biol 23:644–650

    Article  Google Scholar 

  • Tian F, Ding YQ, Yao LT, Zhu H, Du BH (2006) Pseudomonas putida strain G-4-1-2 16S ribosomal RNA gene, partial sequence. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:EF102847]+-newId. Accessed 01 Sep 2009

  • Tin T, Fleming ZL, Hughes KA, Ainley DG, Convey P, Moreno CA, Pfeiffer S, Scott J, Snape I (2009) Impacts of local human activities on the Antarctic environment. Ant Sci 21:3–33

    Article  Google Scholar 

  • Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM (2005) Comparative metagenomics of microbial communities. Science 308:554–557

    Article  PubMed  CAS  Google Scholar 

  • Upton M, Pennington TH, Haston W (1997) Detecting commensals in the area around an Antarctic research station. Ant Sci 9:156–161

    Article  Google Scholar 

  • Van Houdt R, De Boever P, Coninx I, Le Calvez C, Dicasillati R, Mahillon J, Mergeay M, Leys N (2008) Evaluation of the air-borne bacterial population in the periodically confined Antarctic base Concordia. Microb Ecol. doi:10.1007/s00248-008-9462-z

  • Vancanneyt M, Schut F, Snauwaert C, Goris J, Swings J, Gottschal JC (2001) Sphingomonas alaskensis sp. nov., a dominant bacterium from a marine oligotrophic environment. Int J Syst Evol Microbiol 51:73–79

    PubMed  CAS  Google Scholar 

  • Vasanthakumar A, Handelsman J, Schloss PD, Raffa KF (2007) Gut microbiota of an invasive wood-boring beetle the emerald ash borer: community composition and structure across different life stages. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:EU148648]+-newId. Accessed 01 Sep 2009

  • Vasiliadou IA, Siozios S, Papadas IT, Bourtzis K, Pavlou S, Vayenas DV (2006) Kinetics of pure cultures of hydrogen-oxidizing denitrifying bacteria and modeling of the interactions among them in mixed cultures. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:DQ421391]+-newId. Accessed 01 Sep 2009

  • Wagenbach D, Ducroz E, Mulvaney R, Keck L, Minikin A, Legrand M, Hall JS, Wolff EW (1998) Sea-salt aerosol in coastal Antarctic regions. J Geophys Res 103:10961–10974

    Article  CAS  Google Scholar 

  • Wang W (2007) Pseudomonas fluorescens strain CICCHLJ Q92 16S ribosomal RNA gene, partial sequence. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:EF528294]+-newId. Accessed 01 Sep 2009

  • Wenzel M, Schoenig I, Berchtold M, Koenig H (2000) Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:AJ299575]+-newId. Accessed 01 Sep 2009

  • Whang KS (2007) Isolation and phylogenetic characterization of oligotrophic bacteria from Korean ginseng rhizosphere soil. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:AB365794]+-newId. Accessed 21 Apr 2009

  • Whinam J, Chilcott N, Bergstrom DM (2004) Subantarctic hitchhikers: expeditioners as vectors for the introduction of alien organisms. Biol Cons 121:207–219

    Article  Google Scholar 

  • Woese CR (1990) A.calcoaceticus 16S ribosomal RNA. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:M34139]+-newId. Accessed 01 Sep 2009

  • Wolff EW, Cachier H (1998) Concentrations and seasonal cycle of black carbon in aerosol at a coastal Antarctic station. J Geophys Res 103:11033–11042

    Article  CAS  Google Scholar 

  • Yergeau E, Newsham KK, Pearce DA, Kowalchuk GA (2007) Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ Microbiol 9:2670–2682

    Article  PubMed  CAS  Google Scholar 

  • Yuhana M (2004) High mountain snow communities: habitats at lower altitude revealed more diversity compared to that of higher altitude. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:AJ867722]+-newId. Accessed 01 Sep 2009

  • Zeglin LH, Dahm CN, Barrett JE, Gooseff MN, Takacs-Vesbach CD (2008) Bacterial diversity and nutrient concentration across moisture gradients in hot and cold desert streams. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:EU869791]+-newId. Accessed 21 Apr 2009

  • Zhang D (2007) Isolation and characterization of phototrophic bacteria from East China Sea. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:EU252500]+-newId. Accessed 21 Apr 2009

Download references

Acknowledgments

The authors acknowledge the staff of Halley Research Station Antarctica, and in particular Vanessa O’Brien. This research was supported by the LTMS-B task 7 microbial metagenomics project at BAS, and the Environment and Information Division (EID) Environment Office LTMS project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Pearce.

Additional information

Communicated by T. Matsunaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearce, D.A., Hughes, K.A., Lachlan-Cope, T. et al. Biodiversity of air-borne microorganisms at Halley station, Antarctica. Extremophiles 14, 145–159 (2010). https://doi.org/10.1007/s00792-009-0293-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-009-0293-8

Keywords

Navigation