Skip to main content
Log in

Partial characterization of cyanobacterial extracellular polymeric substances for aquatic ecosystems

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Eutrophication, which causes cyanobacterial blooms, is a worldwide concern leading to further deterioration in water quality and adverse changes in the ecosystems due to oxygen consumption of decomposing cell masses. The investigation of extracellular polymeric substances (EPSs) contributes to a better understanding of the growth and proliferation of cyanobacteria. It could be a key to prevent bloom formation of toxic cyanobacteria which can be hazardous for human and animals, especially those in aquatic environments. Hence, the characterization of cyanobacterial EPS has become an important issue to obtain a better understanding of the formation of EPS. In this study, an attenuated total reflectance-Fourier transform infrared, proton nuclear magnetic resonance (H-NMR) and high-resolution Raman spectroscopic methods were used to identify functional groups of EPS obtained from Arthrospira maxima. Thermogravimetric analysis (TGA) was also applied to characterize thermal-stability and structural properties of the EPS. Thermal stability was attributed to the complex and heterogeneous molecular structure of EPS including uronic acid and calcite crystal since 34% of the EPS residue remained after TGA. The presence of uronic acid and calcite crystal causes an overall negative charge and acidic property to the EPS which is of biotechnological importance. Protein amount of EPS was calculated as 7.12% by Bradford assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alves A, Caridade SG, Mano JF, Sousa RA, Reis RL (2010) Extraction and physico-chemical characterization of a versatile biodegradable polysaccharide obtained from green algae. Carbohydr Res 345:2194–2200

    Article  CAS  PubMed  Google Scholar 

  • Andersson S, Dalhammar G, Rajarao GK (2011) Influence of microbial interactions and EPS/polysaccharide composition on nutrient removal activity in biofilms formed by strains found in wastewater treatment systems. Microbiol Res 166(6):449–457

    Article  CAS  PubMed  Google Scholar 

  • Badireddy AR, Chellam S, Gassman PL, Engelhard MH, Lea AS, Rosso KM (2010) Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions. Water Res 44:4505–4516

    Article  CAS  PubMed  Google Scholar 

  • Bhaskar PV, Bhosle NB (2006) Bacterial extracellular polymeric substance (EPS): a carrier of heavy metals in the marine food chain. Environ Int 32:191–198

    Article  CAS  PubMed  Google Scholar 

  • Biswas J, Ganguly J, Paul AK (2015) Partial characterization of extracellular polysaccharide produced by moderately halophilic bacterium Halomonasxianhennis SUR 308. Biofouling 31:735–744

    Article  CAS  PubMed  Google Scholar 

  • Blackwell J (1977) Infrared and raman spectroscopy of polysaccharides. ACS Symp Ser 8(45):103–113

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Castro L, Zhang R, Muñoz JA, González F, Blázquez ML, Sand W, Ballester A (2014) Characterization of exopolymeric substances (EPS) produced by Aeromonas hydrophila under reducing conditions. Biofouling 30:501–511

    Article  CAS  PubMed  Google Scholar 

  • Challouf R, Trabelsi L, Ben-Dhieb R, El Abed O, Yahia A, Ghozzi K, Ben-Ammar J, Omran H, Ben-Ouada H (2011) Evaluation of cytotoxicity and biological activities in extracellular polysaccharides released by cyanobacterium Arthrospira platensis. Braz Arch Biol Technol 54:831–838

    Article  CAS  Google Scholar 

  • Chen M, Xie M, Wu W, Yu F, Li P (2016) Chemical characteristics of capsular polysaccharide and water-soluble released exopolysaccharide from Microcystis. J Lake Sci 28:609–615

    Article  Google Scholar 

  • Chentir I, Hamdi M, Doumandji A, Sadok AH, Ouada HB, Nasri M et al (2017) Enhancement of extracellular polymeric substances (EPS) production in Spirulina (Arthrospira sp.) by two-step cultivation process and partial characterization of their polysaccharidic moiety. J Biol Macromol 105(2):1412–1420

    Article  CAS  Google Scholar 

  • Chowdhury SR, Manna S, Saha P, Basak RK, Sen R, Roy D, Adhikari B (2011) Composition analysis and material characterization of an emulsifying extracellular polysaccharide (EPS) produced by Bacillus megaterium RB-05: a hydrodynamic sediment attached isolate of freshwater origin. J Appl Microbiol 111:1381–1393

    Article  CAS  PubMed  Google Scholar 

  • Comte S, Guibaud G, Baudu M (2006a) Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties part I. Comparison of the efficiency of eight EPS extraction methods. Enzyme Microbial Technol 38:237–245

    Article  CAS  Google Scholar 

  • Comte S, Guibaud G, Baudu M (2006b) Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: soluble or Bound. Process Biochem 41:815–823

    Article  CAS  Google Scholar 

  • Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr Mar Biol Annu Rev 28:73–153

    Google Scholar 

  • Delattre C, Pierre G, Laroche C, Michaud PH (2016) Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv 34(7):1159–1179

    Article  CAS  PubMed  Google Scholar 

  • Deschatre M, Lescop B, Simon Colin C, Ghillebaert F, Guezennec J, Rioual S (2015) Characterization of exopolysaccharides after sorption of silver ions in aqueous solution. J Environ Chem Eng 3:210–216

    Article  CAS  Google Scholar 

  • Dogan NM, Doganli GA, Dogan G, Bozkaya O (2015) Characterization of extracellular polysaccharides (EPS) produced by thermal Bacillus and determination of environmental conditions affecting exopolysaccharides production. Int J Environ Res 9(3):1107–1116

    CAS  Google Scholar 

  • Donot F, Fontana A, Baccou JC, Schorr-Galindo S (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87:951–962

    Article  CAS  Google Scholar 

  • Flemming C-U, Wingender J (2010) Extracellular polymeric substances—the construction material of biofilms—selected proceedings of the 1st IWA international conference on microbial extracellular polymeric subst nature|reviews microbiology, vol 8, pp 623–633

  • Frølund B, Palmgren R, Keiding K, Nielsen PH (1996) Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res 30:1749–1758

    Article  Google Scholar 

  • Gurbuz F, Uzunmehmetoğlu OY, Diler Ö, Metcalf JS, Codd GA (2016) Occurrence of microcystins in water, bloom, sediment and fish from a public water supply. Sci Total Environ 562:860–868

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez T, Mulloy B, Black K, Green DH (2008) Emulsifying and metal ion binding activity of a glycoprotein exopolymer produced by Pseudoalteromonas sp strain TG12. Appl Environ Microbiol 74:4867–4876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez T, Biller DV, Shimmield T, Green DH (2012) Metal binding properties of the EPS produced by Halomonas sp. TG39 and its potential in enhancing trace element bioavailability to eukaryotic phytoplankton. Biometals 25:1185–1194

    Article  CAS  PubMed  Google Scholar 

  • Hassler CS, Alasonati E, Mancuso-Nichols CA, Slaveykova VI (2011a) Exopolysaccharides produced by bacteria isolated from the pelagic Southern Ocean—role of Fe binding, chemical reactivity, and bioavailability. Mar Chem 123:88–98

    Article  CAS  Google Scholar 

  • Hassler CS, Schoemann V, Mancuso-Nichols C, Butler ECV, Boyd PW (2011b) Saccharides enhance iron bioavailability to Southern Ocean phytoplankton. Proc Natl Acad Sci USA 108:1076–1081

    Article  PubMed  Google Scholar 

  • Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM (2018) Cyanobacterial blooms. Nat Rev Microbiol 16:471–483

    Article  CAS  PubMed  Google Scholar 

  • Hussein MH, Abou-ElWafa GS, Shaaban-Dessuuki SA, Hassan NI (2015) Characterization and Antioxidant activity of exopolysaccharide secreted by Nostoccarneum. Int J Pharm 11(5):432–439

    Article  CAS  Google Scholar 

  • Joe D, Taylor JD, McKew BA, Kuhl A, McGenity TJ, Underwood GJC (2013) Microphytobenthic extracellular polymeric substances (EPS) in intertidal sediments fuel both generalist and specialist EPS-degrading bacteria. Limnol Oceanogr 58(4):1463–1480

    Article  Google Scholar 

  • Klock JH, Wieland A, Seifert R, Michaelis W (2007) Extracellular polymeric substances (EPS) from cyanobacterial mats: characterisation and isolation method optimisation. Mar Biol 152:1077–1085

    Article  CAS  Google Scholar 

  • Lin H, Zhang M, Wang F, Meng F, Liao B-Q, Hong H, Chen J, Gao W (2014) A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: characteristics, roles in membrane fouling and control strategies. J Membr Sci 460:110–125

    Article  CAS  Google Scholar 

  • Liu L, Qin B, Zhang Y, Zhu G, Gao G, Huang Q, Yao X (2014) Extraction and characterization of bound extracellular polymeric substances from cultured pure cyanobacterium (Microcystis wesenbergii). J Environ Sci 26:1725–1732

    Article  CAS  Google Scholar 

  • Liu L, Huang Q, Zhang Y, Qin B, Zhu G (2017) Excitation-emission matrix fluorescence and parallel factor analyses of the effects of N and P nutrients on the extracellular polymeric substances of Microcystis aeruginosa. Limnol Ecol Manag Inland Waters 63:18–26

    Article  CAS  Google Scholar 

  • Liu L, Huang Q, Qin B (2018) Characteristics and roles of Microcystis extracellular polymeric substances (EPS) in cyanobacterial blooms: a short review. J Freshwater Ecol. 33(1):183–193

    Article  CAS  Google Scholar 

  • Metcalf JS, Codd GA (2012) Cyanotoxins. In: Whitton BA (ed) Ecology of cyanobacteria II: their diversity in space and time. Springer, Berlin, pp 651–675

    Chapter  Google Scholar 

  • Mishra A, Jha B (2009) Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress. Biores Technol 100:3382–3386

    Article  CAS  Google Scholar 

  • Mota R, Guimaraes R, Buttel Z, Rossi F, Colica G (2013) Production and characterization of extracellular carbohydrate polymer from Cyanothece sp. CCy 0110. Carbohydr Polym 92:1408–1415

    Article  CAS  PubMed  Google Scholar 

  • Nascimento R (2005) The metal binding capacity of Anabaena spiroides extracellular polysaccharide: an EPR study. Process Biochem 40(6):2215–2224

    Article  CAS  Google Scholar 

  • Noghabi KA, Zahiri HS, Yoon SC (2007) The production of a cold-induced extracellular biopolymer by Pseudomonas fluorescens BM07 under various growth conditions and its role for heavy metals absorption. Process Biochem 42:847–855

    Article  CAS  Google Scholar 

  • Pannard A, Pedrono J, Bormans M, Briand E, Claquin P, Lagadeuc Y (2015) Production of exopolymers (EPS) by cyanobacteria: impact on the carbon-to-nutrient ratio of the particulate organic matter. Aquat Ecol. https://doi.org/10.1007/s10452-015-9550-3

    Article  Google Scholar 

  • Pannard A, Pedrono J, Bormans M, Briand E, Claquin P, Lagadeuc Y (2016) Production of exopolymers (EPS) by cyanobacteria: impact on the carbon-to-nutrient ratio of the particulate organic matter. Aquat Ecol 50:29–44

    Article  CAS  Google Scholar 

  • Parikh A, Madamwar D (2006) Partial characterization of extracellular polysaccharides from cyanobacterial. Biosource Technol 97:1822–1827

    Article  CAS  Google Scholar 

  • Parkar D, Jadhav R, Pimpliskar M (2017) Marine bacterial extracellular polysaccharides: a review. J Coast Life Med 5(1):29–35

    Article  CAS  Google Scholar 

  • Passow U (2002) Transparent exopolymer particles (TEP) in aquatic environments. Prog Oceanogr 55:287–333

    Article  Google Scholar 

  • Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, De Philippis R, Tamagnini P (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941

    Article  CAS  PubMed  Google Scholar 

  • Quigley MS, Santschi PH, Guo LD, Honeyman BD (2001) Sorption irreversibility and coagulation behavior of 234 Th with marine NOM. Mar Chem 76:27–45

    Article  CAS  Google Scholar 

  • Raungsomboon S, Chidthaisong A, Bunnag B, Inthorn D, Harvey NW (2008) Removal of lead by the cyanobacterium Gloeocapsa sp. Bioresour Technol 99:5650–5658

    Article  CAS  PubMed  Google Scholar 

  • Rossi F, De Philippis R (2015) Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life 5(2):1218–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satpute SK, Banat IM, Dhakephalkar PK, Banpurkar AG, Chopade BA (2010) Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol Adv 28:436–450

    Article  CAS  PubMed  Google Scholar 

  • Sheng GP, Yu HQ, Li XY (2010) Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv 28(6):882–894

    Article  CAS  PubMed  Google Scholar 

  • Takahashi E, Ledauphin L, Goux D, Orvain F (2009) Optimising extraction of extracellular polymeric substances (EPS) from benthic diatoms: comparison of the efficiency of six EPS extraction methods. Mar Freshw Res 60:1201–1210

    Article  CAS  Google Scholar 

  • Tourney J, Ngwenya BT (2014) The role of bacterial extracellular polymeric substances in geomicrobiology. Chem Geol 386:115–132

    Article  CAS  Google Scholar 

  • Trabelski L, M’sakni NH, Ouada HB, Bacha H, Roudelsi S (2009) Partial characterization of extracellular polysaccharides produced by cyanobacterium Arthrospira platensis. Biotechnol Bioprocess Eng 14:27–31

    Article  CAS  Google Scholar 

  • USEPA (2018) Contaminant candidate list (CCL) and regulatory determination. https://www.epa.gov/ccl/contaminant-candidate-list-3-ccl-3

  • Wang W, Huang HD, Zhang Y, Ma T, Zhang GP, Liang FL, Liu RL (2008) Rheological and gelling properties of a novel biopolymer. Microbiology 35:866–871

    CAS  Google Scholar 

  • Wang XD, Qin BQ, Gao G, Paerl HW (2010) Nutrient enrichment and selective predation by zooplankton promote Microcystis (Cyanobacteria) bloom formation. J Plankton Res 32:457–470

    Article  CAS  Google Scholar 

  • Wang K, Li W, Rui X, Chen X, Jiang M, Dong M (2014) Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. Int J Biol Macromol 63:133–139

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Gao M, Wei J, Ma K, Zhang J, Yang Y, Yu S (2016) Extracellular polymeric substances, microbial activity and microbial community of biofilm and suspended sludge at different divalent cadmium concentrations. Bioresour Technol 205:213–221

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Cai H, Yu G, Jiang H (2013) Insights into extracellular polymeric substances of cyanobacterium Microcystis aeruginosa using fractionation procedure and parallel factor analysis. Water Res 47(6):2005–2014

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Jiang H, Yu G, Yang L (2014) Towards understanding the role of extracellular polymeric substances in cyanobacterial Microcystis aggregation and mucilaginous bloom formation. Chemosphere 117:815–822

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Hu Y, Liu Y, Zhang J, Ulstrup J, Molin S (2011) Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development. Environ Microbiol 13(7):1705–1717

    Article  CAS  PubMed  Google Scholar 

  • Yuan SJ, Sun M, Sheng GP, Li Y, Li WW, Yao RS, Yu HQ (2011) Identification of key constituents and structure of the extracellular polymeric substances excreted by Bacillus megaterium TF10 for their flocculation capacity. Environ Sci Technol 45:1152–1157

    Article  CAS  PubMed  Google Scholar 

  • Zorrouk C (1966) Contribution al’etuded’unecyanobacterie: influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setchell et Gardner) Geitler. Ph.D. thesis, University of Paris, France

  • Zou C, Du Y, Li Y, Yang J, Feng T, Zhang L, Kennedy JF (2008) Preparation of lacquer polysaccharide sulfates and their antioxidant activity in vitro. Carbohydr Polym 73:322–331

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Gurbuz.

Additional information

Handling Editor: Bas W. Ibelings.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaplan Can, H., Gurbuz, F. & Odabaşı, M. Partial characterization of cyanobacterial extracellular polymeric substances for aquatic ecosystems. Aquat Ecol 53, 431–440 (2019). https://doi.org/10.1007/s10452-019-09699-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-019-09699-z

Keywords

Navigation