Skip to main content
Log in

Insights into the Viscoelastic Peculiarities of Cyanobacterial Extracellular Polymeric Substance (EPS)

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Extracellular polymeric substances (EPSs) can be defined as renewable, high molecular weight polymeric materials produced by bacteria and microorganisms. EPSs are composed of primarily polysaccharides, proteins with minor amounts of nucleic acids, lipids, and humic substances. Cyanobacterial EPSs have a significant physiological effect on bloom formation and stress tolerance in adverse conditions. Therefore, cyanobacterial EPS has an important factor for aquatic life, environment and human life. For these reasons, determining the structure and structure-property relationships of cyanobacterial EPS is important for understanding its behavior and performance. In this study, the identification of the structure-property relationships, thermal and viscoelastic properties of cyanobacterial EPS, X-ray diffraction analysis, differential thermal analysis and dynamic mechanical analysis (DMA) have been performed. Viscoelastic properties of the polymeric materials have been interpreted by certain DMA parameters at a fixed frequency depending on the temperature to understand the performance of cyanobacterial EPS. Because of viscoelastic behavior and termal stability, EPSs present great ecological importance as well as market potential for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mishra A, Kavita K, Jha B (2011) Characterization of extracellular polymeric substances produced by micro-algae Dunaliella salina. Carbohydr Polym 83:852–857. https://doi.org/10.1016/j.carbpol.2010.08.067

    Article  CAS  Google Scholar 

  2. Flemming H-C, Wingender J (2001) Relevance of microbial extracellular polymeric substances (EPSs)—part I: structural and ecological aspects. Water Sci Technol 43:1–8

    Article  CAS  Google Scholar 

  3. Flemming H-C, Wingender J (2001) Relevance of microbial extracellular polymeric substances (EPSs)—part II: technical aspects. Water Sci Technol 43:9–16

    Article  CAS  Google Scholar 

  4. Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    Article  CAS  Google Scholar 

  5. Gerbersdorf SU, Westrich B, Paterson DM (2009) Microbial extracellular polymeric substances (EPS) in fresh water sediments. Microb Ecol 58:334–349

    Article  CAS  Google Scholar 

  6. Tian X, Shen Z, Han Z, Zhou Y (2019) The effect of extracellular polymeric substances on exogenous highly toxic compounds in biological wastewater treatment: an overview. Bioresour Technol Rep 5:28–42

    Article  Google Scholar 

  7. Shahebrahimi Y, Fazlali A (2021) Phase equilibria, physical and rheological properties of extracellular polymeric substances in the aqueous urea solutions at different temperatures and concentrations. J Environ Manag 284:112103

    Article  CAS  Google Scholar 

  8. Shi Y, Huang J, Zeng G et al (2017) Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments: an overview. Chemosphere 180:396–411

    Article  CAS  Google Scholar 

  9. Izadi P, Izadi P, Eldyasti A (2021) Holistic insights into extracellular polymeric substance (EPS) in anammosx bacterial matrix and the potential sustainable biopolymer recovery: a review. Chemosphere 274:129703

    Article  CAS  Google Scholar 

  10. More TT, Yadav JSS, Yan S et al (2014) Extracellular polymeric substances of bacteria and their potential environmental applications. J Environ Manag 144:1–25

    Article  CAS  Google Scholar 

  11. Ferrando D, Ziemba C, Herzberg M (2017) Revisiting interrelated effects of extracellular polysaccharides during biofouling of reverse osmosis membranes: viscoelastic properties and biofilm enhanced osmotic pressure. J Memb Sci 523:394–401

    Article  CAS  Google Scholar 

  12. Lin F, Li J, Liu M et al (2020) New insights into the effect of extracellular polymeric substance on the sludge dewaterability based on interaction energy and viscoelastic acoustic response analysis. Chemosphere 261:127929

    Article  CAS  Google Scholar 

  13. Mahapatra B, Dhal NK, Pradhan A, Panda BP (2020) Application of bacterial extracellular polymeric substances for detoxification of heavy metals from contaminated environment: a mini-review. Mater Today Proc 30:283–288

    Article  CAS  Google Scholar 

  14. Bajpai VK, Khan I, Shukla S et al (2020) N, P-doped carbon nanodots for food-matrix decontamination, anticancer potential, and cellular bio-imaging applications. J Biomed Nanotechnol 16:283–303

    Article  CAS  Google Scholar 

  15. Tripathi KM, Ahn HT, Chung M et al (2020) N, S, and P-Co-doped carbon quantum dots: Intrinsic peroxidase activity in a wide pH range and its antibacterial applications. ACS Biomater Sci Eng 6:5527–5537

    Article  CAS  Google Scholar 

  16. Bajpai VK, Khan I, Shukla S et al (2020) Multifunctional N-P-doped carbon dots for regulation of apoptosis and autophagy in B16F10 melanoma cancer cells and in vitro imaging applications. Theranostics 10:7841–7856

    Article  CAS  Google Scholar 

  17. Sharma A, Sharma RK, Kim Y-K et al (2021) Upgrading of seafood waste as a carbon source: nano-world outlook. J Environ Chem Eng 9:2213–3437. https://doi.org/10.1016/j.jece.2021.106656

    Article  CAS  Google Scholar 

  18. Costa OYA, Raaijmakers JM, Kuramae EE (2018) Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front Microbiol 9:1636

    Article  Google Scholar 

  19. Cai S, Wu H, Hong P et al (2021) Bioflocculation effect of Glyptotendipes tokunagai on different Microcystis species: interactions between secreted silk and extracellular polymeric substances. Chemosphere 277:130321

    Article  CAS  Google Scholar 

  20. Liu L, Huang Q, Qin B (2018) Characteristics and roles of Microcystis extracellular polymeric substances (EPS) in cyanobacterial blooms: a short review. J Freshw Ecol 33:183–193

    Article  CAS  Google Scholar 

  21. Can HK, Gurbuz F, Odabaşı M (2019) Partial characterization of cyanobacterial extracellular polymeric substances for aquatic ecosystems. Aquat Ecol 53:431–440

    Article  Google Scholar 

  22. Pereira SB, Mota R, Santos CL et al (2013) Assembly and export of extracellular polymeric substances (EPS) in cyanobacteria: a phylogenomic approach. Adv Bot Res 65:235–279

    Article  CAS  Google Scholar 

  23. Sun F, Zhang H, Qian A et al (2020) The influence of extracellular polymeric substances on the coagulation process of cyanobacteria. Sci Total Environ 720:137573

    Article  CAS  Google Scholar 

  24. Si W, Xu H, Kong M et al (2019) Effects of molecular weight fractions and chemical properties of time-series cyanobacterial extracellular polymeric substances on the aggregation of lake colloidal particles. Sci Total Environ 692:1201–1208

    Article  CAS  Google Scholar 

  25. Ye T, Zhao Z, Bai L et al (2020) Characteristics and bacterial community dynamics during extracellular polymeric substance (EPS) degradation of cyanobacterial blooms. Sci Total Environ 748:142309

    Article  CAS  Google Scholar 

  26. Xu H, Li F, Kong M et al (2020) Adsorption of cyanobacterial extracellular polymeric substance on colloidal particle: influence of molecular weight. Sci Total Environ 715:136959

    Article  CAS  Google Scholar 

  27. Navarini L, Bertocchi C, Cesàro A et al (1990) Rheology of aqueous solutions of an extracellular polysaccharide from Cyanospira capsulata. Carbohydr Polym 12:169–187

    Article  CAS  Google Scholar 

  28. Navarini L, Cesàro A, Ross-Murphy SB (1992) Viscoelastic properties of aqueous solutions of an exocellular polysaccharide from cyanobacteria. Carbohydr Polym 18:265–272

    Article  CAS  Google Scholar 

  29. Zarrouk C (1966) Contribution a l’etude d’une cyanobacterie: influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setchell et Gardner) Geitler. Université de Paris, Paris

    Google Scholar 

  30. Flemming H-C, Neu TR, Wingender J (1999) Microbial extracellular polymeric substances: characterization, structure, and function. Springer, Berlin, Heidelberg

    Google Scholar 

  31. Comte S, Guibaud G, Baudu M (2006) Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties: part I. Comparison of the efficiency of eight EPS extraction methods. Enzyme Microb Technol 38:237–245

    Article  CAS  Google Scholar 

  32. Pal A, Paul AK (2008) Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol 48:49

    Article  CAS  Google Scholar 

  33. Zamora F, Gonzalez MC, Duenas MT et al (2002) Thermodegradation and thermal transitions of an exopolysaccharide produced by Pediococcus damnosus 2.6. J Macromol Sci Part B 41:473–486

    Article  Google Scholar 

  34. Mota R, Guimarães R, Büttel Z et al (2013) Production and characterization of extracellular carbohydrate polymer from Cyanothece sp. CCY 0110. Carbohydr Polym 92:1408–1415

    Article  CAS  Google Scholar 

  35. Can HK, Kavlak S, Güner A (2016) Experimental approaches to investigation of the interaction in between anhydride containing copolymer and poly (N-vinyl-Pyrrolidone) blends. Polym Polym Compos 24:213–224

    CAS  Google Scholar 

  36. Landel RF, Nielsen LE (1993) Mechanical properties of polymers and composites. CRC Press, Boca Raton

    Book  Google Scholar 

  37. Ehrenstein GW, Riedel G, Trawiel P (2012) Thermal analysis of plastics: theory and practice. Carl Hanser Verlag, Munich

    Google Scholar 

  38. Hazarika A, Mandal M, Maji TK (2014) Dynamic mechanical analysis, biodegradability and thermal stability of wood polymer nanocomposites. Compos Part B Eng 60:568–576

    Article  CAS  Google Scholar 

  39. Gupta SS, Meena A, Parikh T, Serajuddin ATM (2016) Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion-I: polyvinylpyrrolidone and related polymers. J Excipients Food Chem 5:1001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hatice Kaplan Can or Fatma Gurbuz.

Ethics declarations

Conflict of interest

The authors of the manuscript solemnly declare that no scientific and/or financial conflict of interest, exists with other people or institutions.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Can, H.K., Kavlak, S., Gurbuz, F. et al. Insights into the Viscoelastic Peculiarities of Cyanobacterial Extracellular Polymeric Substance (EPS). J Polym Environ 30, 3055–3062 (2022). https://doi.org/10.1007/s10924-022-02399-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02399-0

Keywords

Navigation