Skip to main content
Log in

Residual-type a posteriori error analysis of HDG methods for Neumann boundary control problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We study a posteriori error analysis of linear-quadratic boundary control problems under bilateral box constraints on the control which acts through a Neumann-type boundary condition. We adopt the hybridizable discontinuous Galerkin method as the discretization technique, and the flux variables, the scalar variables, and the boundary trace variables are all approximated by polynomials of degree k. As for the control variable, it is discretized by the variational discretization concept. Then, an efficient and reliable a posteriori error estimator is introduced, and we prove that the error estimator provides an upper bound and a lower bound for the errors. Finally, numerical results are presented to illustrate the performance of the obtained a posteriori error estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babuška, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736–754 (1978)

    Article  MathSciNet  Google Scholar 

  2. Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: basic concept. SIAM J. Control Optim. 39, 113–132 (2000)

    Article  MathSciNet  Google Scholar 

  3. Benedix, O., Vexler, B.: A posteriori error estimation and adaptively for elliptic optimal control problems with state constraints. Comput. Optim Appl. 44, 3–25 (2009)

    Article  MathSciNet  Google Scholar 

  4. Benner, P., Yücel, H.: Adaptive symmetric interior penalty Galerkin method for boundary control problems. SIAM J. Numer. Anal. 55, 1101–1133 (2017)

    Article  MathSciNet  Google Scholar 

  5. Chen, G., Hu, W., Shen, J., Singler, J., Zhang, Y., Zhang, X.: An HDG method for distributed control of convection diffusion PDEs. J. Comput. Appl. Math. 343, 643–661 (2018)

    Article  MathSciNet  Google Scholar 

  6. Chen, G., Cui, J: On the error estimates of a hybridizable discontinuous Galerkin method for second-order elliptic problem with discontinuous coefficients. IMA J. Numer. Anal. 40, 1577–1600 (2020)

    Article  MathSciNet  Google Scholar 

  7. Cai, Z., He, C., Zhang, S.: Discontinuous finite element methods for interface problem: robust a priori and a posteriori error estimates. SIAM J. Numer. Anal. 55, 400–418 (2017)

    Article  MathSciNet  Google Scholar 

  8. Chowdhury, S., Gudi, T., Nandakumaran, A.K.: Error bounds for a Dirichlet boundary control problem based on energy spaces. Math. Comp. 86, 1103–1126 (2017)

    Article  MathSciNet  Google Scholar 

  9. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)

    Article  MathSciNet  Google Scholar 

  10. Cockburn, B., Zhang, W.: A posteriori error estimates for HDG methods. J. Sci. Comput. 51, 582–607 (2012)

    Article  MathSciNet  Google Scholar 

  11. Cockburn, B., Zhang, W.: A posteriori error analysis for hybridizable discontinuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 51, 676–693 (2013)

    Article  MathSciNet  Google Scholar 

  12. Cockburn, B., Zhang, W.: An a posteriori error estimate for the variable-degree Raviart-Thomas method. Math. Comp. 83, 1063–1082 (2013)

    Article  MathSciNet  Google Scholar 

  13. Fu, G., Qiu, W., Zhang, W.: An analysis of HDG methods for convection-dominated diffusion problems. ESAIM M2AN 49, 225–256 (2015)

    Article  MathSciNet  Google Scholar 

  14. Gaevskaya, A., Iliash, Y., Kieweg, M., Hoppe, R.H.W.: Convergence analysis of an adaptive finite element method for distributed control problems with control constraints. Control of Coupled Partial Differential Equations, Birkhäuser, Basel, pp. 47–68 (2007)

  15. Gong, W., Yan, N.: Adaptive finite element method for elliptic optimal control problems: convergence and optimality. Numer. Math. 135, 1121–1170 (2017)

    Article  MathSciNet  Google Scholar 

  16. Gong, W., Liu, W., Tan, Z., Yan, N.: A convergent adaptive finite element method for elliptic Dirichlet boundary control problems. IMA J. Numer. Anal. 39, 1985–2015 (2019)

    Article  MathSciNet  Google Scholar 

  17. Gong, W., Hu, W., Mateos, M., Singler, J., Zhang, X., Zhang, Y.: A new HDG method for Dirichlet boundary control of convection diffusion PDEs II: low regularity. SIAM J. Numer. Anal. 56, 2262–2287 (2018)

    Article  MathSciNet  Google Scholar 

  18. Hinze, M.: A variational discretization concept in control constrained optimization: the linear quadratic case. Comput. Optim. Appl. 30, 45–61 (2005)

    Article  MathSciNet  Google Scholar 

  19. Hoppe, R.H.W., Iliash, Y., Iyyunni, C., Sweilam, N.H.: A posteriori error estimates for adaptive finite element discretizations of boundary control problems. J. Numer. Math. 14, 57–82 (2006)

    Article  MathSciNet  Google Scholar 

  20. Hintermüller, M., Hoppe, R.H.W., Iliash, Y., Kieweg, M.: An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints. ESAIM Control Optim. Calc. Var. 14, 540–560 (2008)

    Article  MathSciNet  Google Scholar 

  21. Hintermüller, M., Hoppe, R.H.W.: Goal-oriented adaptivety in pointwise state constrained optimal control of partial differential equations. SIAM J. Control Optim. 48, 5468–5487 (2010)

    Article  MathSciNet  Google Scholar 

  22. Kohls, K., Rösch, A., Siebert, K.G.: A posteriori error analysis of optimal control problems with control constraints. SIAM J. Control Optim. 52, 1832–1861 (2014)

    Article  MathSciNet  Google Scholar 

  23. Kohls, K., Siebert, K.G., Rösch, A.: Convergence of adaptive finite elements for optimal control problems with control constraints. Trends in PDE Constrained Optimization, Springer, Cham, Switzerland, pp. 403–419 (2014)

  24. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    Book  Google Scholar 

  25. Liu, W., Yan, N.: A posteriori error estimates for distributed convex optimal control problems. Adv. Comput. Math. 15, 285–309 (2001)

    Article  MathSciNet  Google Scholar 

  26. Liu, W., Yan, N.: A posteriori error estimates for convex boundary control problems. SIAM J. Numer. Anal. 39, 73–99 (2001)

    Article  MathSciNet  Google Scholar 

  27. Li, R., Liu, W., Ma, H., Tang, T.: Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim. 41, 1321–1349 (2002)

    Article  MathSciNet  Google Scholar 

  28. Leng, H., Chen, Y.: Convergence and quasi-optimality of an adaptive finite element method for optimal control problems with integral control constraint. Adv. Comput. Math. 44, 367–394 (2018)

    Article  MathSciNet  Google Scholar 

  29. Leng, H., Chen, Y.: Adaptive hybridizable discontinuous Galerkin methods for nonstationary convection diffusion problems. Adv. Comput. Math. 46, 50 (2020)

    Article  MathSciNet  Google Scholar 

  30. Leng, H.: Adaptive HDG methods for steady-state incompressible Navier-Stokes equations. J. Sci. Comput. 87, 37 (2021)

    Article  MathSciNet  Google Scholar 

  31. Nguyen, N.C., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for Stokes flow. Comput. Methods Appl. Mech. Engrg 199, 582–597 (2010)

    Article  MathSciNet  Google Scholar 

  32. Stevenson, R.: Optimality of a standard adaptive finite element method. Found Comput. Math. 2, 245–269 (2007)

    Article  MathSciNet  Google Scholar 

  33. Yücel, H., Benner, P.: Adaptive discontinuous Galerkin methods for state constrained optimal control problems governed by convection diffusion equations. Comput. Optim. Appl. 62, 291–321 (2015)

    Article  MathSciNet  Google Scholar 

  34. Yücel, H., Karasözen, B.: Adaptive symmetric interior penalty Galerkin (SIPG) method for optimal control of convection diffusion equations with control constraints. Optimization 63, 145–166 (2014)

    Article  MathSciNet  Google Scholar 

  35. Zhou, Z., Yu, X., Yan, N: The local discontinuous Galerkin approximation of convection dominated diffusion optimal control problems with control constraints. Numer. Methods Partial Differential Equations 30, 339–360 (2014)

    Article  MathSciNet  Google Scholar 

  36. Zhang, Q., Ito, K., Li, Z., Zhang, Z.: Immersed finite elements for optimal control problems of elliptic PDEs with interfaces. J. Comput. Phys. 298, 305–319 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The work of Haitao Leng was supported by the Cultivation Project of SCNU (Grant No. 19KJ08) and the NSF of China (Grant No. 12001209). The work of Yanping Chen was supported by the State Key Program of NSF of China (11931003) and the NSF of China (41974133, 11671157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Chen.

Additional information

Communicated by: Peter Benner

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leng, H., Chen, Y. Residual-type a posteriori error analysis of HDG methods for Neumann boundary control problems. Adv Comput Math 47, 30 (2021). https://doi.org/10.1007/s10444-021-09864-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-021-09864-9

Keywords

Mathematics Subject Classification (2010)

Navigation